
 NFVSOL(18)000100r2

 1/44

Title*: ETSI NFV SOL REST API Conventions

from Source*: SOL WG

Contact: Uwe Rauschenbach (as editor)

input for Committee*: NFV SOL

Contribution For*: Decision

 Discussion

 Information X

Submission date*: 2018-11-22

Meeting & Allocation: NFVSOL#85-F2F Sophia Antipolis

Relevant WI(s), or
deliverable(s):

ABSTRACT: This document collects all agreed REST API conventions to be applied to the ETSI

NFV SOL REST APIs (including SOL002, SOL003 and SOL005).

Document NFVSOL(18)000100 is a revision of document NFVSOL(17)000050r5 in the
2018 document space.

Table of Contents

Table of Contents ... 1

1 Scope .. 3

2 References .. 3

3 Process .. 3

4 Conventions for names, strings and URIs .. 4
4.1 Case conventions ... 4
4.2 Conventions for URI parts ... 5
4.3 Conventions for names in data structures .. 6
4.4 Conventions for URI structure and supported content formats .. 7

5 Conventions for Message flows ... 8
5.1 Tool support ... 8
5.2 Graphical conventions ... 8

6 API patterns .. 11
6.1 Pattern: Subscribe-Notify .. 11
6.1.1 Description ... 11

 NFVSOL(18)000100r2

 2/44

6.1.2 Resource definition(s) and HTTP methods .. 13
6.1.3 Resource representation(s) ... 13
6.1.4 HTTP Headers .. 13
6.1.5 Response codes and error handling .. 14
6.2 Pattern: Links ... 14
6.2.1 Description ... 14
6.2.2 Resource definition(s) and HTTP methods .. 14
6.2.3 Resource representation(s) ... 14
6.2.4 HTTP Headers .. 15
6.2.5 Response codes and error handling .. 15
6.3 Pattern: Resource creation (POST) .. 15
6.3.1 Description ... 15
6.3.2 Resource definition(s) and HTTP methods .. 16
6.3.3 Resource representation(s) ... 16
6.3.4 HTTP Headers .. 16
6.3.5 Response codes and error handling .. 16
6.4 Pattern: Reading a resource (GET) .. 16
6.4.1 Description ... 16
6.4.2 Resource definition(s) and HTTP methods .. 17
6.4.3 Resource representation(s) ... 17
6.4.4 HTTP Headers .. 17
6.4.5 Response codes and error handling .. 17
6.5 Pattern: Resource query with filtering/selection (GET) ... 17
6.5.1 Description ... 17
6.5.2 Attribute-based filtering ... 17
6.5.3 Attribute selectors .. 17
6.6 Pattern: Resource update (PATCH) ... 18
6.6.1 Description ... 18
6.6.2 Resource definition(s) and HTTP methods .. 19
6.6.3 Resource representation(s) ... 19
6.6.4 HTTP Headers .. 20
6.6.5 Response codes and error handling .. 20
6.7 Pattern: Resource deletion (DELETE) ... 20
6.7.1 Description ... 20
6.7.2 Resource definition(s) and HTTP methods .. 20
6.7.3 Resource representation(s) ... 21
6.7.4 HTTP Headers .. 21
6.7.5 Response codes and error handling .. 21
6.8 Pattern: Asynchronous invocation with monitor.. 21
6.8.1 Description ... 21
6.8.2 Resource definition(s) and HTTP methods .. 23
6.8.3 Resource representation(s) ... 23
6.8.4 HTTP Headers .. 23
6.8.5 Response codes and error handling .. 23
6.9 Pattern: Asynchronous resource creation without monitor .. 24
6.9.1 Description ... 24
6.9.2 Resource definition(s) and HTTP methods .. 24
6.9.3 Resource representation(s) ... 24
6.9.4 HTTP Headers .. 25
6.9.5 Response codes and error handling .. 25
6.10 Pattern: Task resources .. 25
6.10.1 Description ... 25
6.10.2 Resource definition(s) and HTTP methods .. 25
6.10.3 Resource representation(s) ... 25
6.10.4 HTTP Headers .. 25
6.10.5 Response codes and error handling .. 25
6.11 Pattern: Authorization .. 26
6.12 Pattern: Error reporting .. 26

Annex A: REST API template for interface clauses .. 26

X <Long API name> interface .. 26
X.1 Description ... 26

 NFVSOL(18)000100r2

 3/44

X.2 API version .. 26
X.3 Resource structure and methods .. 26
X.4 Sequence diagrams (informative) .. 28
X.4.1 <Procedure 1> .. 29
X.4.2 <Procedure 2> .. 29
X.5 Resources ... 29
X.5.1 Introduction .. 29
X.5.2 Resource: <Meaning> ... 30
X.6 Data model ... 33
X.6.1 Introduction .. 33
X.6.2 Resource and notification data types .. 33
X.6.3 Referenced structured data types .. 35
X.6.4 Referenced simple data types and enumerations .. 35

Annex B: Guidance for managing API version identifiers ... 36
B.1 API versioning ... 36
B.2 Visibility of the API version identifier fields in the OpenAPI specifications .. 36
B.3 Relation to the base GS version identifier ... 36

Annex C: Change requests classification ... 38
C.1 Introduction.. 38
C.2 The Field “Other comments” ... 38
C.3 Examples of BWC Changes... 39
C.4 Examples of NBWC Changes .. 40

Annex D: History ... 42

1 Scope

This living document collects the conventions for the ETSI NFV REST APIs as agreed by the ETSI NFV SOL
working group. It is a document that is intended for ETSI NFV SOL to guide the development of the ETSI
NFV SOL REST API specifications. An example for an API developed based on the conventions in this
document can be found in [1].

2 References

[1] ETSI GS NFV-SOL 003: "Network Functions Virtualisation (NFV) Release 2; Protocols and Data

Models; RESTful protocols specification for the Or-Vnfm Reference Point". Available from:

http://www.etsi.org/deliver/etsi_gs/NFV-SOL/001_099/003/02.05.01_60/gs_NFV-

SOL003v020501p.pdf

[2] PlantUML website, http://plantuml.com/

[3] ETSI GS NFV-SOL 013: "Network Functions Virtualisation (NFV) Release 2; Protocols and Data

Models; Specification of common aspects for RESTful NFV MANO APIs". Draft preview

available from: https://docbox.etsi.org/isg/nfv/open/drafts/

3 Process

This document is classified as "for information". It collects all REST API conventions that were agreed by ETSI NFV

SOL. Each convention shall be proposed by a contribution to ETSI NFV SOL for decision, clearly indicating the

additions / changes to the present document. Once Accepted by ETSI NFV SOL, the changes will be incorporated by

the editor into a new revision of the conventions document.

Even though the present document is classified as "For Information", the conventions and patterns contained in it are

binding for ETSI NFV SOL when developing the SOL REST APIs, since the document reflects content that was agreed

by group decision. To deviate from the agreed conventions for particular contributions requires SOL WG consensus.

http://www.etsi.org/deliver/etsi_gs/NFV-SOL/001_099/003/02.05.01_60/gs_NFV-SOL003v020501p.pdf
http://www.etsi.org/deliver/etsi_gs/NFV-SOL/001_099/003/02.05.01_60/gs_NFV-SOL003v020501p.pdf
http://plantuml.com/
https://docbox.etsi.org/isg/nfv/open/drafts/

 NFVSOL(18)000100r2

 4/44

4 Conventions for names, strings and URIs

4.1 Case conventions

The following case conventions for names and strings are available for potential use in the Stage 3 specifications.

1. ALLUPPER

All letters of a string are capital letters. Digits are allowed but not at the first position. No other

characters are allowed.

EXAMPLES:

a. MANAGEMENTINTERFACE

b. ETSINFVMANAGEMENT

2. alllower

All letters of a string are lowercase letters. Digits are allowed but not at the first position. No other

characters are allowed.

EXAMPLES:

a. managementinterface

b. etsinfvmanagement

3. UPPER_WITH_UNDERSCORE

All letters of a string are capital letters. Digits are allowed but not at the first position. Word

boundaries are represented by the underscore "_" character. No other characters are allowed.

EXAMPLES:

a. MANAGEMENT_INTERFACE

b. ETSI_NFV_MANAGEMENT

4. lower_with_underscore

All letters of a string are lowercase letters. Digits are allowed but not at the first position. Word

boundaries are represented by the underscore "_" character. No other characters are allowed.

 NFVSOL(18)000100r2

 5/44

EXAMPLES:

a. management_interface

b. etsi_nfv_management.

5. UpperCamel

A string is formed by concatenating words. Each word starts with an uppercase letter (this implies

that the string starts with an uppercase letter). All other letters are lowercase letters. Digits are

allowed but not at the first position. No other characters are allowed. Abbreviations follow the same

scheme (i.e. first letter uppercase, all other letters lowercase).

EXAMPLES:

a. ManagementInterface

b. EtsiNfvManagement

6. lowerCamel

As UpperCamel, but with the following change: The first letter of a string shall be lowercase (i.e. the

first word starts with a lowercase letter).

EXAMPLES:

a. managementInterface

b. etsiNfvManagement.

4.2 Conventions for URI parts

Based on IETF RFC 3986, the parts of the URI syntax that are relevant in the context of the ETSI NFV SOL
REST API are follows.

• Path, consisting of segments, separated by "/" (e.g. segment1/segment2/segment3)

• Query, consisting of pairs of parameter name and value (e.g., ?org=nfv&group=sol)

Decision 1. Path Segment Naming Conventions.

a. The path segments of a resource URI which represent a constant string shall use
lower_with_underscore.

EXAMPLE: vnf_instances

b. If a resource represents a collection of entities, the last path segment of that resource's URI
shall be plural.

EXAMPLE: …/prefix/API/1_0/users

 NFVSOL(18)000100r2

 6/44

c. For resources that are not task resources, the last path segment of the resource URI should be a
(composite) noun.

EXAMPLE: …/prefix/API/1_0/users

d. For resources that are task resources, the last path segment of the resource URI should be a
verb, or at least start with a verb.

EXAMPLES:
…/vnf_instances/{vnfInstanceId}/scale
…/vnf_instances/{vnfInstanceId}/scale_to_level

e. A variable name which represents a single path segment or a sequence of one or more path
segments of a resource URI shall use lowerCamel, and shall be surrounded by curly brackets. A
variable in the path part of a resource URI represents a single path segment unless it is explicitly
specified that it represents one or more path segments.

EXAMPLE: {vnfInstanceId}

f. Once a variable is replaced at runtime by an actual string, the string shall follow the rules for a
single path segment or one or more path segments defined in IETF RFC 3986. IETF RFC 3986
disallows certain characters from use in a path segment. Each actual ETSI NFV SOL API
specification shall define this restriction to be followed when generating values for variables
that represent a single path segment or one or more path segments, or propose a suitable
encoding (such as percent-encoding according to IETF RFC 3986), to escape such characters if
they can appear in input strings intended to be substituted for a path segment variable.

Decision 2. Query Naming Conventions

a. Parameter names in queries shall use lower_with_underscore.

EXAMPLE: ?working_group=SOL

b. Variables that represent actual parameter values in queries shall use lowerCamel and shall be
surrounded by curly brackets.

EXAMPLE: ?working_group={chooseAWorkingGroup}

c. Once a variable is replaced at runtime by an actual string, the convention defined in Decision1.f.
applies to that string.

4.3 Conventions for names in data structures

The following syntax conventions shall be obeyed when defining the names for attributes and parameters in

the ETSI NFV SOL REST API data structures.

a. Names of attributes / parameters shall be represented using lowerCamel.

EXAMPLE: vnfName

 NFVSOL(18)000100r2

 7/44

NOTE: It is assumed that, deviating from this rule, the names of attributes/parameters in the VNFD in

SOL001 use lower_with_underscore.

b. Names of arrays (i.e., those with cardinality 1..N or 0..N) shall be plural rather than singular.

EXAMPLES: users, extVirtualLinks

c. "True" identifiers defined in IFA007 and IFA008 using the name syntax "xyzStructureId" shall be represented

using the name "id."

NOTE: In IFA007/8, the name of an attribute that is a "true" identifier of a data structure "XyzStructure" uses the

name syntax "xyzStructureId". The term "true" identifier denotes an identifier embedded in

"XyzStructure" for identifying and/or externally referencing an instance of that structure.

d. Each value of an enumeration types shall be represented using UPPER_WITH_UNDERSCORE.

EXAMPLE: NOT_INSTATIATED

e. The names of data types shall be represented using UpperCamel.

EXAMPLES: ResourceHandle, VnfInstance

4.4 Conventions for URI structure and supported content
formats

This clause specifies the URI prefix and the supported formats applicable to the APIs defined in the present document.

All resource URIs of the APIs shall have the following prefix:

{apiRoot}/{apiName}/{apiVersion}/

 where

{apiRoot} indicates the scheme ("http" or "https"), the host name and optional port, and an optional

sequence of path segments that together represent a prefix path.

{apiName} indicates the interface name in an abbreviated form. The {apiName} of each interface is

defined in the clause specifying the corresponding interface.

{apiVersion} indicates the current version of the API and is defined in the clause specifying the

corresponding interface.

For HTTP requests and responses that have a body, the content format JSON (see IETF RFC 7159) shall be supported.

The JSON format shall be signalled by the content type "application/json".

All APIs shall support and use HTTP over TLS (also known as HTTPS) (see IETF RFC 2818). TLS version 1.2 as

defined by IETF RFC 5246 shall be supported.

All resource URIs of the API shall comply with the URI syntax as defined in IETF RFC 3986. An implementation that

dynamically generates resource URI parts (individual path segments, sequences of path segments that are separated by

"/", query parameter values) shall ensure that these parts only use the character set that is allowed by IETF RFC 3986

for these parts.

NOTE 1: This means that characters which are not part of this allowed set need to be escaped using percent-

encoding as defined by IETF RFC 3986.

 NFVSOL(18)000100r2

 8/44

Unless otherwise specified explicitly, all request URI parameters that are part of the path of the resource URI shall be

individual path segments, i.e. shall not contain the "/" character.

NOTE 2: A request URI parameter is denoted by a string in curly brackets, e.g. {subscriptionId}.

5 Conventions for Message flows

5.1 Tool support

To obtain a unique appearance of all flow diagrams in the REST specifications, ETSI NFV SOL uses the free tool

PlantUML [2].

The tool can be obtained here: https://sourceforge.net/projects/plantuml/files/plantuml.jar/download.

Documentation can be obtained here: http://plantuml.com/PlantUML_Language_Reference_Guide.pdf.

The appearance of the diagrams is controlled by the "skin.inc" file which shall be included in every PlantUML source,

as follows:

• Save the text below in a text file named "skin.inc" and pPut it into the same directory as the

PlantUML source file

skinparam monochrome true

skinparam sequenceActorBackgroundColor #FFFFFF

skinparam sequenceParticipantBackgroundColor #FFFFFF

skinparam noteBackgroundColor #FFFFFF

autonumber "#'.'"

• Use these instructions at the beginning of the PlantUML source file to include the file

@startuml

!include skin.inc

• When making a contribution, ensure to include the PlantUML source file in a ZIP archive with the

contribution

5.2 Graphical conventions

1) An HTTP request is represented by a solid arrow (->) with the method name, followed by the URI, followed by an

indication of the type of the entity body, if applicable.

EXAMPLE: client -> server: POST …/vnf_instances (FooBarType)

2) An HTTP response is represented by a solid arrow (->) with the response code, followed by the meaning of the

response code, followed by an indication of the type of the entity body, if applicable.

 EXAMPLE: server -> client: 201 Created (FooBarType)

3) If it is necessary to call out a particular attribute in the entity body for later reference, use the syntax

<type>;<attribute>=<value>

 EXAMPLE: server -> client: 201 Created (FooBarType:id=123)

https://sourceforge.net/projects/plantuml/files/plantuml.jar/download
http://plantuml.com/PlantUML_Language_Reference_Guide.pdf

 NFVSOL(18)000100r2

 9/44

4) A condition, postcondition, or precondition, if needed, is expressed as a note over client and server.

 EXAMPLE: note over client, server

 Precondition: Everything was prepared

 end note

5) A processing step, if there is no need to number it, or a comment, is expressed as a note over client or server.

 EXAMPLE: note over server

 Update internal database

 end note

6) A processing step, if there is the need to automatically number it for reference from the text, is expressed as a "signal

to self" at server or client side, with a dashed slim-headed arrow.

 EXAMPLE: server -->> server: Update internal database

7) HTTP requests and responses shall be numbered, with an increment of one. The necessary definitions for automatic

numbering are included in skin.inc.

8) A message or message exchange of which the details are defined elsewhere is represented with a dashed slim-headed

arrow and set in italics.

 EXAMPLE: server -->> client: <i>Send XyzNotification</i>

9) A sequence of messages that is optional to execute, and the associated notes, are enclosed into an "opt" section.

 EXAMPLE:

opt

 client -> server: GET …/nice_to_have

 server -> client: 200 OK (NiceToHaveType)

end

An overall example that illustrates the provisions above is given in the figures 5.2-1 and 5.2-2.

NOTE: This illustrates VNF instantiation but may differ from the actual technical content that will eventually be

agreed for inclusion into the GS.

@startuml

!include skin.inc

participant "NFVO" as cli

participant "VNFM" as srv

note over cli, srv

 Precondition: VNF instance does not exist

 NFVSOL(18)000100r2

 10/44

end note

cli -> srv: POST …/vnf_instances (VnfInstance)

srv -> cli: 201 Created (VnfInstance:links.self=…/vnf_instances/123)

note over cli, srv

 Condition: VNF instance in NOT_INSTANTIATED state

end note

cli -> srv: POST …/vnf_instances/123/instantiate (InstantiateParams)

srv -> cli: 202 Accepted ()

srv -->> cli: <i> Send VnfLcmOperationOccurrenceNotification (start)</i>

opt

note over cli

 Client polls the VNF lifecycle

 operation occurrence resource

end note

end

cli -> srv: GET …/vnf_lc_ops/abcxyz456

srv -> cli: 200 OK (LcOpOcc:status=processing)

srv -->> srv: Instantiation finished

srv -->> cli: <i>Send VnfLcmOperationOccurrenceNotification (result)</i>

opt

cli -> srv: GET …/vnf_lc_ops/abcxyz456

srv -> cli: 200 OK (LcOpOcc:status=success)

end

note over cli, srv

 Postcondition: VNF instance in INSTANTIATED state

end note

@enduml

Figure 5.2-1: PlantUML source to illustrate the conventions defined above

 NFVSOL(18)000100r2

 11/44

Figure 5.2-2: Flow diagram resulting from the PlantUML source in figure 5.2-1

6 API patterns

6.1 Pattern: Subscribe-Notify

6.1.1 Description

A common task in distributed systems is to keep all involved components informed of changes that appear in a

particular component at a particular time. A common approach to spread information about a change is to distribute

notifications about the change to those components that have indicated interest earlier on. Such pattern is known as

Subscribe/Notify. In REST which is request-response by design, meaning that every request is initiated by the client,

specific mechanisms need to be put into place to support the server-initiated delivery of notifications. The basic

principle is that the REST client exposes a lightweight HTTP server towards the REST server. The lightweight HTTP

server only needs to support a small subset of the HTTP functionality – namely the POST method, the 204 success

response code plus the relevant error response codes, and, if applicable, authentication/authorization. The REST client

exposes the lightweight HTTP server in a way that it is reachable via TCP by the REST server.

 NFVSOL(18)000100r2

 12/44

To manage subscriptions, the REST server needs to expose a container resource under which the REST client can

request the creation / deletion of individual subscription resources. Those resources typically define criteria of the

subscription. Subscription resources can also be read using GET. Termination of a subscription is done by a DELETE

request.

To receive notifications, the client exposes one or more HTTP endpoints on which it can receive POST requests. When

creating a subscription, the client informs the server of the endpoint (callbackUri) to which the server will later deliver

notifications related to that particular subscription.

To deliver notifications, the server includes the actual notification payload in the entity body of a POST request, and

sends that request to the endpoint(s) it knows from the subscription(s). The client acknowledges the receipt of the

notification with “204 No Content”.

Figure 6.1.1-1 illustrates the management of subscriptions. Figure 6.1.1-2 illustrates the delivery of a notification.

 NFVSOL(18)000100r2

 13/44

Figure 6.1.1-1: Management of subscriptions

Figure 6.1.1-2: Delivery of notifications

6.1.2 Resource definition(s) and HTTP methods

The following resources are involved:

1) Subscriptions resource: A resource that can hold zero or more subscription resources as child resources

2) Individual subscription resource: A resource that represents a subscription

3) An HTTP endpoint that is exposed by the REST client to receive the notifications

The HTTP method to create a new individual subscription resource inside the subscriptions resource shall be POST.

The HTTP method to terminate a subscription by removing an individual subscription resource shall be DELETE. The

HTTP method to read the subscriptions resource and to read individual subscription resources shall be GET.

The HTTP method used by the server to deliver notifications shall be POST.

6.1.3 Resource representation(s)

The following provisions are applicable to the representation of an individual subscription resource:

- It shall contain the URI of an HTTP endpoint that the REST client exposes to receive notifications. That URI

shall be provided by the client on subscription.

- It should contain criteria that allow the server to determine the events about which the client wishes to be

notified. APIs may deviate from this recommendation for instance when there are just one or two event types,

or when it is essential that the client is informed about all events.

The following provisions are applicable to the representation of a notification:

- It shall contain a reference to the related subscription, using the "_links" attribute (see Pattern for links, clause

6.2)

- It shall contain information about the event.

6.1.4 HTTP Headers

No specific provisions are applicable here.

 NFVSOL(18)000100r2

 14/44

6.1.5 Response codes and error handling

On successful subscription creation, "201 Created" shall be returned.

On successful subscription deletion, "204 No Content" shall be returned.

On successfully reading an "individual subscription" resource or querying the "subscriptions" resource, "200 OK" shall

be returned.

On successful notification delivery, “204 No Content” shall be returned.

On failure, the appropriate error code shall be returned.

6.2 Pattern: Links

6.2.1 Description

It is commonly seen as good adherence to RESTful principles that resources link to other resources, allowing the client

to traverse the resource space. Such principle is also known as "hypermedia controls" or HATEOAS (Hypermedia as

the engine of application state). This clause describes a pattern for hyperlinks.

Hyperlinks to other resources should be embedded into the representation of resources where applicable. For each

hyperlink, the target URI of the link and information about the meaning of the link shall be provided. Knowing the

meaning of the link (typically conveyed by the name of the object that defines the link, or by an attribute such as "rel")

allows the client to automatically traverse the links to access resources related to the actual resource, in order to perform

operations on them.

6.2.2 Resource definition(s) and HTTP methods

Links can be applicable to any resource and any HTTP method.

6.2.3 Resource representation(s)

Links are communicated in the resource representation. Links that occur at the same level in the representation shall be

bundled in a JSON object, named "_links" which should occur as the first object at a particular level.

Links shall be embedded in that JSON object as contained objects. The name of each contained object defines the

semantics of the particular link. The content of each link object shall be an object named "href" of type string, which

defines the target URI the link points to. The link to the actual resource shall be named "self" and shall be present in

every resource representation if links are used in that API.

As an example, the "_links" portion of a resource representation is shown that represents paged information. Figure

6.2.3-3 illustrates the JSON schema and figure 6.2.3-4 illustrates the JSON object.

"properties": {

 "_links": {

 "required": ["self"],

 "type": "object",

 "description": "Link relations",

 "properties": {

 "self": {

 "$ref": "#/definitions/Link"

 },

 "prev": {

 "$ref": "#/definitions/Link"

 },

 "next": {

 "$ref": "#/definitions/Link"

 }

 NFVSOL(18)000100r2

 15/44

 }

 }

},

"definitions": {

 "Link" : {

 "type": "object",

 "properties": {

 "href": {"type": "string"}

 },

 "required": ["href"]

 }

}

Figure 6.2.3-3: JSON schema fragment for an example "_links" element

{

 "_links": {

 "self": { "href": "http://api.example.com/my_api/v1/pages/127" },

 "next": { "href": "http://api.example.com/my_api/v1/pages/128" },

 "prev": { "href": "http://api.example.com/my_api/v1/pages/126" }

 }

}

Figure 6.2.3-4: JSON fragment for an example "_links" element

6.2.4 HTTP Headers

There are no specific provisions w.r.t. HTTP headers for this pattern.

6.2.5 Response codes and error handling

There are no specific provisions w.r.t. response codes and error handling for this pattern.

6.3 Pattern: Resource creation (POST)

6.3.1 Description

New resources are created on the origin server as children of a parent resource. In order to request resource creation, the

client sends a POST request to the parent resource and includes a representation of the resource to be created. The

server generates an identifier for the new resource that is unique for all child resources in the scope of the parent

resource, and concatenates this with the resource URI of the parent resource to form the resource URI of the child

resource. The server creates the new resource, and returns in a "201 Created" response a representation of the created

resource along with a "Location" HTTP header that contains the resource URI of this resource.

Figure 6.3.1-1 illustrates creating a resource.

 NFVSOL(18)000100r2

 16/44

Figure 6.3.1-1: Resource creation flow

6.3.2 Resource definition(s) and HTTP methods

The following resources are involved:

1) parent resource: A container that can hold zero or more child resources;

2) created resource: A child resource of a container resource that is created as part of the operation. The resource

URI of the child resource is a concatenation of the resource URI of the parent resource with a string that is

chosen by the server, and that is unique in the scope of the parent resource URI.

The HTTP method shall be POST.

6.3.3 Resource representation(s)

The entity body of the request shall contain a representation of the resource to be created. The entity body of the

response shall contain a representation of the created resource.

NOTE: Compared to the entity body passed in the request, the entity body in the response may be different, as the

resource creation process may have modified the information that has been passed as input, or generated

additional attributes.

6.3.4 HTTP Headers

On success, the "Location" HTTP header shall be returned, and shall contain the URI of the newly created resource.

6.3.5 Response codes and error handling

On success, "201 Created" shall be returned. On failure, the appropriate error code shall be returned.

Resource creation can also be asynchronous in which case "202 Accepted" shall be returned instead of "201 Created".

See clauses 6.8 and 6.9 for more details about asynchronous operations.

6.4 Pattern: Reading a resource (GET)

6.4.1 Description

This pattern obtains a representation of the resource, i.e. reads a resource, by using the HTTP GET method. For most

resources, the GET method should be supported. An exception is task resources (see clause 6.10); these cannot be read.

Figure 6.4.1-1 illustrates reading a resource.

 NFVSOL(18)000100r2

 17/44

Figure 6.4.1-1: Reading a resource

6.4.2 Resource definition(s) and HTTP methods

This pattern is applicable to any resource that can be read. The HTTP method shall be GET.

6.4.3 Resource representation(s)

The entity body of the request shall be empty; the entity body of the response shall contain a representation of the

resource that was read, if successful.

6.4.4 HTTP Headers

No specific provisions for HTTP headers for this pattern.

6.4.5 Response codes and error handling

On success, "200 OK" shall be returned. On failure, the appropriate error code shall be returned.

6.5 Pattern: Resource query with filtering/selection (GET)

6.5.1 Description

This pattern influences the response of the GET method by passing resource URI parameters in the query part of the

resource URI. Typically, this pattern is applied to container resources whose representation is a list of the child

resources.

Typically, query parameters are used for

• restricting a set of objects to a subset, based on filtering criteria;

• controlling the content of the result;

• reducing the content of the result (such as suppressing optional attributes).

6.5.2 Attribute-based filtering

See clause 5.2 of ETSI GS NFV-SOL013 [3].

6.5.3 Attribute selectors

See clause 5.3 of ETSI GS NFV-SOL013 [3].

 NFVSOL(18)000100r2

 18/44

6.6 Pattern: Resource update (PATCH)

6.6.1 Description

The PATCH HTTP method (see IETF RFC 5789) is used to update a resource on top of the existing resource state with

the changes described by the client.

NOTE: There is an alternative to use PUT to update a resource which overwrites the resource completely with the

representation passed in the payload body of the PUT request. PUT is not used for the update of

structured data in ETSI NFV SOL, but may be used to upload raw files.

PATCH does not carry a representation of the resource in the entity body, but a document that instructs the server how

to modify the resource representation. In ETSI NFV SOL specifications, JSON Merge Patch (IETF RFC 7396) is used

for that purpose, which defines fragments that are merged into the target JSON document.

Figure 6.6.1-1 illustrates updating a resource by PATCH.

Figure 6.6.1-1: Basic resource update flow with PATCH

The approach illustrated above can suffer from the "lost update" phenomenon when concurrent changes are applied to

the same resource. HTTP (see IETF RFC 7232) supports conditional requests to detect such a situation and to give the

client the opportunity to deal with it. For that purpose, each version of a resource gets assigned an "entity tag" (ETag)

that is modified by the server each time the resource is changed. This information is delivered to the client in the

"ETag" HTTP header in HTTP responses. If the client wishes that the server executes the PATCH only if the ETag has

not changed since the time it has last read the resource (GET), the client adds to the PATCH request the HTTP header

"If-Match" with the ETag value obtained from the GET request. The server executes the PATCH request only if the

ETag in the "If-Match" HTTP header matches the current ETag of the resource, and responds with "412 Precondition

Failed" otherwise. This is illustrated in figure 6.6.1-2.

 NFVSOL(18)000100r2

 19/44

Figure 6.6.1-2: Resource update flow with PATCH, considering concurrent updates

In a particular API, it is recommended to stick to one update pattern - either PUT or PATCH.

6.6.2 Resource definition(s) and HTTP methods

This pattern is applicable to any resource that allows update by PATCH.

6.6.3 Resource representation(s)

The entity body of the PATCH request does not carry a representation of the resource, but a description of the changes

in one of the formats defined by IETF RFC 7396. IETF RFC 7396 does no selective update of arrays. However, in ETSI

NFV SOL specifications, many array elements are objects that contain an identifier attribute. In order to modify arrays

of that type, ETSI NFV SOL has defined an extension of IETF RFC 7396 that allows to add and to update elements, as

follows:

Assumptions:

1) "oldList" is the array to be modified (part of the resource representation) and "newList" is the array in the

"Modifications" document (part of the PATCH payload) that contains the changes

2) "oldEntry" is an entry in "oldList" and "newEntry" is an entry in "newList"

3) A "newEntry" has a "corresponding entry" if there exists an "oldEntry" that has the same content of "id"

attribute as the "newEntry"; a "newEntry" has no corresponding entry if no such "oldEntry" exists

4) In any array of "oldEntry" and "newEntry" structures, the content of the "id" attribute is unique (i.e. there

are no two entries with the same content of "id")

Provisions:

1) For each "newEntry" in "newList" that has no corresponding entry in "oldList", the "oldList" array shall be

modified by adding that "newEntry"

 NFVSOL(18)000100r2

 20/44

2) For each "newEntry" in "newList" that has a corresponding "oldEntry" in "oldList", the value of "oldEntry"

shall be updated with the value of "newEntry" according to the rules of JSON Merge PATCH (see IETF

RFC 7396).

The entity body of the PATCH response may either be empty, or may carry a representation of the updated resource.

6.6.4 HTTP Headers

In the request, the "Content-type" HTTP header needs to be set to the content type registered for the format used to

describe the changes, according to IETF RFC 7396.

If conflicts and data inconsistencies are foreseen when multiple clients update the same resource, the client should pass

in the "If-Match" HTTP header of the PUT request the value of the "ETag" HTTP header received in the response to the

GET request.

6.6.5 Response codes and error handling

On success, either "200 OK" or "204 No Content" shall be returned. If the ETag value in the "If-Match" HTTP header

of the PATCH request does not match the current ETag value of the resource, "412 Precondition Failed" shall be

returned. Otherwise, on failure, the appropriate error code (see annex B) shall be returned.

Resource update can also be asynchronous in which case "202 Accepted" shall be returned instead of "200 OK". See

clause 6.8 for more details about asynchronous operations.

6.7 Pattern: Resource deletion (DELETE)

6.7.1 Description

The Delete pattern deletes a resource by invoking the HTTP DELETE method on that resource. After successful

completion, the client shall not assume that the resource is available any longer.

The response of the DELETE request is typically empty.

When a deleted resource is accessed subsequently by any HTTP method, typically the server responds with "404

Resource Not Found".

Figure 6.7.1-1 illustrates deleting a resource.

Figure 6.7.1-1: Resource deletion flow

6.7.2 Resource definition(s) and HTTP methods

This pattern is applicable to any resource that can be deleted. The HTTP method shall be DELETE.

 NFVSOL(18)000100r2

 21/44

6.7.3 Resource representation(s)

The entity body of the request shall be empty. The entity body of the response is typically empty.

NOTE: Alternatively, the response can include the final representation of the resource prior to deletion.

6.7.4 HTTP Headers

No specific provisions for HTTP headers for this pattern.

6.7.5 Response codes and error handling

On success, "204 No content" shall be returned. On failure, the appropriate error code shall be returned.

If a deleted resource is accessed subsequently by any HTTP method, the server shall respond with "404 Resource Not

Found".

Resource deletion can also be asynchronous in which case "202 Accepted" shall be returned instead of "204 No

content". See clause 6.8 for more details about asynchronous operations.

6.8 Pattern: Asynchronous invocation with monitor

6.8.1 Description

Certain operations, which are invoked via a RESTful interface, trigger processing tasks in the underlying system that

may take a long time, from minutes over hours to even days. In this case, it is inappropriate for the REST client to keep

the HTTP connection open to wait for the result of the response - the connection will time out before a result is

delivered. For these cases, asynchronous operations are used. The idea is that the operation immediately returns the

provisional response "202 Accepted" to indicate that the request was understood, can be correctly marshalled in, and

processing has started. The client can check the status of the operation by polling; additionally or alternatively, the

subscribe-notify mechanism (see clause 6.1) can be used to provide the result once available. The progress of the

operation is reflected by a monitor resource.

Figure 6.8.1-1 illustrates asynchronous operations with polling. After receiving an HTTP request that is to be processed

asynchronously, the server responds with "202 Accepted" and includes in a specific "Location" HTTP header a data

structure that points to a monitor resource which represents the progress of the processing operation. The client can then

poll the monitor resource by using GET requests, each returning a data structure with information about the operation,

including the (application-specific) processing status such as "processing", "success" and "failure". In the example, the

initial status is set to "processing". Eventually, when the processing is finished, the status is set to "success" (for

successful completion of the operation) or "failure" (for completion with errors). Typically, the representation of a

monitor resource will include additional information, such as information about the error cause if the operation was not

successful.

 NFVSOL(18)000100r2

 22/44

Figure 6.8.1-1: Asynchronous operation flow - with polling

Figure 6.8.1-2 illustrates asynchronous operations with subscribe/notify. Before a client issues any request that might be

processed asynchronously, it subscribes for monitor change notifications. Later, after receiving an HTTP request that is

to be processed asynchronously, the server responds with "202 Accepted" and includes in the "Location" HTTP header

a data structure that points to a monitor resource which represents the progress of the processing operation. The client

can now wait for receiving a notification about the operation finishing, which will change the status of the monitor.

Once the operation is finished, the server will send to the client a notification with a structure in the entity body that

typically includes the status of the operation (e.g. "success" or "failure"), a link to the actual monitor affected, and a link

to the resource that is modified by the asynchronous operation, and application-specific further information, The client

can then read the monitor resource to obtain further information.

 NFVSOL(18)000100r2

 23/44

Figure 6.8.1-2: Asynchronous operation flow - with subscribe/notify

6.8.2 Resource definition(s) and HTTP methods

The following resources are involved:

3) Primary resource: The resource that is about to be created/modified/deleted by the long-running operation.

4) Monitor resource: The resource that provides information about the long-running operation.

The HTTP method applied to the primary resource can be any of POST/PUT/PATCH/DELETE.

The HTTP method applicable to read the monitor resource shall be GET.

If monitor change notifications and subscriptions to these are supported, the resources and methods described in clause

6.1 for the RESTful subscribe/notify pattern are applicable here too.

6.8.3 Resource representation(s)

The 202 response shall have an empty body.

The representation of the monitor resource shall contain at least the following information:

• Resource URI of the primary resource.

• Status of the operation (e.g. "processing", "success", "failure").

• Additional information about the result or the error(s) occurred, if applicable.

• Information about the operation (e.g. type, parameters, HTTP method used).

If subscribe/notify is supported, the monitor change notification shall include the status of the operation and the

resource URI of the monitor, and shall include the resource URI of the affected primary resource.

6.8.4 HTTP Headers

The link to the monitor shall be provided in the "Location" HTTP header.

6.8.5 Response codes and error handling

On success, "202 Accepted" shall be returned as the response to the request that triggers the long-running operation. On

failure, the appropriate error code shall be returned.

 NFVSOL(18)000100r2

 24/44

The GET request to the monitor resource shall use "200 OK" as the response code if the monitor could be read

successfully, or the appropriate error code otherwise.

If subscribe/notify is supported, the provisions in clause 6.1.5 apply in addition.

6.9 Pattern: Asynchronous resource creation without monitor

6.9.1 Description

If only resource creation is asynchronous, there is a simplified pattern available that neither requires a monitor nor a

subscription. The progress of the operation is tracked by the response code of a GET request to the resource that is

being created. The POST request to create the resource returns "202 Accepted" and includes the URI of the resource to

be created in the "Location" HTTP header, and the same response code is returned by the GET request on the to-be-

created resource as long as the resource creation is ongoing.

Figure 6.9.1-1 illustrates this pattern.

Figure 6.9.1-1: Asynchronous operation flow - with polling

6.9.2 Resource definition(s) and HTTP methods

The following resources are involved:

5) Parent resource: The resource under which a new child resource will be created by the long-running operation.

The HTTP method applied to the parent resource shall be POST.

The HTTP method applicable to read the created resource shall be GET.

6.9.3 Resource representation(s)

The provisions for the resource representation of the POST request to create a resource and the GET response when

reading a resource apply.

 NFVSOL(18)000100r2

 25/44

6.9.4 HTTP Headers

The URI of the resource to be created shall be provided in the "Location" HTTP header in the 202 response to the

POST request.

6.9.5 Response codes and error handling

On success, "202 Accepted" shall be returned as the response to the POST request that triggers the long-running

resource creation operation.

The GET request to the resource that is being created shall return the "202 Accepted" response code.

The GET request to the resource that has been successfully created shall return the "200 OK" response code.

 On failure, the appropriate error code shall be returned by the POST as well as the GET request.

6.10 Pattern: Task resources

6.10.1 Description

In REST interfaces, the goal is to use only four operations on resources: Create, Read, Update, Delete (the so-called

CRUD principle). However, in a number of cases, actual operations needed in a system design are difficult to model as

CRUD operations, be it because they involve multiple resources, or that they are processes that modify a resource and

that take a number of input parameters that do not appear in the resource representation. Such operations are modelled

as "task resources".

A task resource is a child resource of a primary resource which is intended as an endpoint for the purpose of invoking a

non-CRUD operation. That non-CRUD operation executes a procedure that modifies the state of that actual resource in

a specific way, or performs a computation and returns the result. Task resources are an escape means that allows to

incorporate aspects of a service-oriented architecture or RPC endpoints into a RESTful interface.

The only HTTP method that is supported for a task resource is POST, with an entity body that provides input

parameters to the process which is triggered by the request. Different responses to a POST request to a task resource are

possible, such as "202 Accepted" (for asynchronous invocation), "200 OK" (to provide a result of a computation based

on the state of the resource and additional parameters), "204 No Content" (to signal success but not return a result), or

"303 See Other" (to indicate that a different resource was modified). The actual code used depends greatly on the actual

system design.

6.10.2 Resource definition(s) and HTTP methods

A task resource that models an operation on a particular primary resource is often defined as a child resource of that

primary resource. The name of the resource should be a verb that indicates which operation is executed when sending a

POST request to the resource.

EXAMPLE: …/call_sessions/{sessionId}/call_participants/{participantId}/transfer.

The HTTP method shall be POST.

6.10.3 Resource representation(s)

The entity body of the POST request does not carry a resource representation, but contains input parameters to the

process that is triggered by the POST request.

6.10.4 HTTP Headers

In case the task resource represents an operation that is asynchronous, the provisions in clause 6.8 apply.

In case the operation modifies a primary resource and the response contains the "303 See Other" response code, the

"Location" HTTP header points to the primary resource.

6.10.5 Response codes and error handling

The response code returned depends greatly on the actual operation that is represented as a task resource, and may

include the following:

 NFVSOL(18)000100r2

 26/44

• For long-running operations, "202 Accepted" is returned. See clause 6.8 for more details about asynchronous

operations.

• If the operation modifies another resource, "303 See Other" is returned.

• If the operation returns a computation result, "200 OK" is returned.

• If the operation returns no result, "204 No Content" is returned.

On failure, the appropriate error code is returned.

6.11 Pattern: Authorization

ETSI NFV SOL uses OAuth 2.0 or an optional TLS-based method to authorize access to the APIs. Further details are

provided in clause 8 of ETSI GS NFV-SOL013 [3].

6.12 Pattern: Error reporting

See clause 6 of ETSI GS NFV-SOL013 [3].

Annex A: REST API template for interface clauses

X <Long API name> interface

<Template note: One main clause per interface (e.g. VNF Lifecycle Management interface) >

X.1 Description

<Template note: Provides a description of the interface.>

X.2 API version

For the <Long API name> interface as specified in the present document, the MAJOR version field shall be <major>,

the MINOR version field shall be <minor> and the PATCH version field shall be <patch> (see clause 9.1 of ETSI GS

NFV-SOL013 [<ref>] for a definition of the version fields). Consequently, the {apiMajorVersion} URI variable shall

be set to "v<major>".

X.3 Resource structure and methods

All resource URIs of this API shall use the base URI specification defined in clause 4.1 of ETSI GS NFV-SOL013

[<ref>]. The string "<putApiNameHere>" shall be used to represent {apiName}. The {apiVersion} shall be set to “v1”

for the present specification. All resource URIs in the sub-clauses below are defined relative to the above base URI.

<Template note: the content formats to be supported are defined globally. If for a particular API there is
deviation from the global definition this needs to be defined here>

 NFVSOL(18)000100r2

 27/44

Figure X.3-1 shows the overall resource URI structure defined for the <long API name> API. Table X.3-1 lists the

individual resources defined, and the applicable HTTP methods.

<Template note: a node with a box represents a path segment that has at least one supported HTTP method
associated. A node without a box represents a path segment that has none. All node names are examples
only>

<Template note: A PPT template for the graph above is available as part of the latest revision of this
document>

Figure X.3-1 Resource URI structure of the <long API name> interface

<Template note: Overview table of resources and operations>

Table X.3-1 lists the individual resources defined, and the applicable HTTP methods.

<Template note: In the text below, parts that are not applicable (e.g. if there are no "C" or "O" resources) can
be removed>

The <API producer> shall support responding to requests for all HTTP methods on the resources in Table X.3-1 that

are marked as "M" (mandatory) in the "Cat" column, and may support responding to requests for those marked as "O"

(optional). Conditions for support of responding to requests for those resources and methods marked as "C"

(conditional) in the "Cat" column by the <API producer> are defined by notes in table X.3-1.

The <API producer> shall also support the "API versions" resources as specified in clause 9.3.3 of of ETSI GS NFV-

SOL013 [<ref>].

 NFVSOL(18)000100r2

 28/44

Table X.3-1: Resources and methods overview of the <long API name> interface

Resource name

Resource URI
HTTP

METHOD Cat

Meaning

<Resource Meaning> <relative URI below root> POST M/C/O <short description>

GET M/C/O <short description>

PUT M/C/O <short description>

PATCH M/C/O <short description>

DELETE M/C/O <short description>

…

Subscriptions <relative URI below root>

POST M/C/O <short description>

[…] M/C/O <short description>

…

Notification endpoint (client-provided) POST (*) <short description>. (*) See note.

GET (*) <short description>. (*) See note.

NOTE: The <API producer> shall support invoking the HTTP methods defined for the "Notification endpoint" resource exposed by
the <API consumer>. If the <API consumer> supports invoking the POST method on the "Subscriptions" resource towards
the <API producer>, it shall also support responding to the HTTP requests defined for the "Notification endpoint" resource.

<Template note: In the table above, only include sub-rows for those HTTP methods that are applicable to the
resource. Only include rows defining the "Notification endpoint" and "Subscriptions" resources and the
related notes if subscribe-notify is supported in that API. >

<Template note: Start of Example>

Table X.3-2: Resources and methods overview of the Foobar interface

Resource name

Resource URI

HTTP
METHOD

Cat

Meaning

FOO instances /foo_instances GET M Query multiple FOO instances.

POST M Create a FOO instance resource.

Individual FOO instance /foo_instances/{instanceId} GET M Query single FOO instance.

PATCH O Modify FOO instance information.

DELETE M Delete FOO instance resource.

Enlarge FOO task /foo_instances/{instanceId}/enla
rge

POST C Enlarge a FOO instance. See note 1.

Subscriptions /subscriptions POST M Create a new subscription.

Notification endpoint (client-provided) POST (*) Notify about foo change events. (*) See note 2.

GET (*) Test the notification endpoint. (*) See note 2.

NOTE 1: Support of this task resource by the FOO Manager depends on the capability level of the FOO manager. FOO Managers of
capability level "super power" shall support this task resource; all others need not support this task resource.

NOTE 2: The FOO Manager shall support invoking the HTTP methods defined for the "Notification endpoint" resource exposed by the FOO
Orchestration Master. If the FOO Orchestration Master supports invoking the POST method on the "Subscription" resource
towards the FOO Manager, it shall also support responding to the HTTP requests defined for the "Notificaton endpoint" resource.

<Template note: End of Example>

X.4 Sequence diagrams (informative)

<Template note: this clause is Informative. No normative keywords in this clause>

 NFVSOL(18)000100r2

 29/44

<Template note: This clause will be included if needed to illustrate non-trivial call flows.>

X.4.1 <Procedure 1>

<Template note: Add introductory text>

This clause …

<Template note: Add flow diagram using PlantUML tool, see clause 5.1. Don’t forget caption. Conventions
and example documented in clause 5.2.>

<placeholder for graphics, centered>

Figure X.4.1-1 Flow of <Procedure 1>.

<Template note: Add precondition if applicable>

Precondition: Text text text

<Template note: Add description of the steps>

<Template note: Conventions and example for the description of a flow documented in clause 5>

<Procedure 1>, as illustrated in figure X.4.2-1, consists of the following steps:

<Template note: Add error handling if applicable>

Error handling: Text text text

X.4.2 <Procedure 2>

<Template note: same as clause X.4.1>

X.5 Resources

<Template note: this clause is Normative.

X.5.1 Introduction

This clause defines the resources and methods of the <long API name> API.

<Template note: Repeat the following as often as needed, per resource>

 NFVSOL(18)000100r2

 30/44

X.5.2 Resource: <Meaning>

X.5.2.1 Description

This resource represents <something>. The client can use this resource to <do something>.

<Template note: or similar text as applicable.>

<Template note: Start of Example

This resource represents VNF instances. The client can use this resource to create individual VNF instance resources, and

to query VNF instances.

<Template note: End of Example

X.5.2.2 Resource definition

The resource URI is:

{apiRoot}/<putApiNameHere>/v1/<foo_bar>

This resource shall support the resource URI variables defined in table X.5.2.2-1.

Table X.5.2.2-1: Resource URI variables for this resource

Name Definition

apiRoot See clause 4.1 of ETSI GS NFV-SOL 013 [<ref>].

<name> <definition>

X.5.2.3 Resource Methods

X.5.2.3.1 POST

<Template note: Alternative 2>

The POST method … <Meaning(s) of the operation in API space. Add specific normative statements about what the

API producer block is expected to do when receiving this request.>.

<Template note: Alternative 2>

This method is not supported. When this method is requested, the <API producer> shall return a "405 Method Not

Allowed" response as defined in clause 6.4 of ETSI GS NFV-SOL 013 [<ref>].

<Template note: End of alternatives>

<Template note: Start Example>

The POST method creates a fooBar object.

<Template note: End Example>

This method shall follow the provisions specified in the tables X.5.2.3.1-1 and X.5.2.3.1-2 for URI query parameters,

request and response data structures, and response codes.

 NFVSOL(18)000100r2

 31/44

Table X.5.2.3.1-1: URI query parameters supported by the <POST> method on this resource

Name Cardinality Remarks

<name>
or
none supported

0..1 or 1 or
0..N or
<leave
empty>

<only if applicable>

Table X.5.2.3.1-2: Details of the <POST> request/response on this resource

Request
body

Data type Cardinality Description

<type> or n/a 1 <(i.e.
object)> or
0..N / 1..N /
m..n <i.e.
array> or
<leave
empty>

<Description of the case in which this data type is sent. Shall be
present if multiple alternatives exist and may be omitted in case of
a single alternative>

Response
body

Data type

Cardinality

Response

Codes

Description

<type> or n/a 1 <(i.e.
object)> or
0..N / 1..N /
m..n <i.e.
array> or
<leave
empty>

<list
applicable
codes with
name from
RFC7231
etc.>

<Statement defining the case in which this response is
returned (success or error)>

<Normative statement about the response body>

<if specific headers are applicable> The HTTP
response shall / should / may <choose one> include a
<name> HTTP header that…

<endif>

<Further text if applicable>

(…)

ProblemDetails See clause
6.4 of [<ref>].

4xx/5xx In addition to the response codes defined above, any
common error response code as defined in clause 6.4
of ETSI GS NFV-SOL 013 [<ref>] may be returned.

<Template note: Start of Example>

Table X.5.2.3.1-3: URI query parameters supported by the POST method on this resource

Name Cardinality Remarks

foo_bar 0..1 The foo bar

 NFVSOL(18)000100r2

 32/44

Table X.5.2.3.1-4: Details of the POST request/response on this resource

Request
body

Data type Cardinality Description

FooBarCreateRequest 1 Foobar instance creation parameters

Response
body

Data type

Cardinality

Response

Codes

Description

FooBarInstance 1 201
Created

The foobar instance was created successfully.

The response body shall contain a representation of
the created foobar instance resource.

The HTTP response shall include a "Location" HTTP
header that contains the URI of the newly-created
resource.

ProblemDetails 1 400 Bad
Request

Incorrect parameters were passed to the request.

In the returned ProblemDetails structure, the "detail"
attribute should convey more information about the
error.

ProblemDetails 1 404
Not Found

The resource URI was incorrect.

In the returned ProblemDetails structure, the "detail"
attribute should convey more information about the
error.

ProblemDetails See clause
6.4 of
[<ref>].

4xx/5xx In addition to the response codes defined above, any
common error response code as defined in clause 6.4
of ETSI GS NFV-SOL 013 [<ref>] may be returned.

<Template note: End of Example>

<Template note: Main place to define error handling is the table above. If necessary, describe ADDITIONAL
error handling in text below>

Error handling: text text text

X.5.2.3.2 GET

<same structure as for POST>

X.5.2.3.3 PUT

<same structure as for POST>

 NFVSOL(18)000100r2

 33/44

X.5.2.3.4 PATCH

<same structure as for POST>

X.5.2.3.5 DELETE

<same structure as for POST>

X.6 Data model

<Template note: this clause is normative.>

X.6.1 Introduction

<Template note: To be written according to the individual specification>

X.6.2 Resource and notification data types

X.6.2.1 Introduction

This clause defines data structures to be used in resource representations and notifications.

X.6.2.2 Type: <TypeName1>

This type represents a <…>. It shall comply with the provisions defined in table X.6.2.2-1.

<Template note: Data type names in UpperCamel>

<Template note: Short descriptive text of this data type, followed by a Table. Choices to be defined as
follows: “NOTE: One of “firstChoice” or at least one of “secondChoice” but not both shall be
present.”>

<Template note:

- “Attribute name” provides the name of the attribute in lowerCamel

- “Data type” may provide the name of a named data type (structured, simple or enum) that is defined
elsewhere in this document, or in a referenced document (e.g., a referenced type from another
document.) In the latter case, a reference to the defining document shall be included in the
“Description” column.

- "Data type" may also indicate the definition of an inlined nested structure. In case of inlining a
structure, the "Data type" column shall contain the string "Structure (inlined)", and all attributes of the
inlined structure shall be prefixed with a number of closing angular brackets ">" that represent the
level of nesting.

- Typically, named data types are used for a structure that is intended to be re-used for referencing
from many data types, or when modularizing big data types into smaller ones, e.g. for exposure
using sub-resources. Inline structures are used if the same structure only appears in one or very few
data types.

"Data type" may also indicate the definition of an inlined enumeration type. In case of inlining an
enumeration type, the "Data type" column shall contain the string "Enum (inlined)", and the
"Description" column shall contain the allowed values and their meanings.

 NFVSOL(18)000100r2

 34/44

- “Cardinality” defines the allowed number of occurrence

- “Description” describes the meaning and use of the attribute and may contain normative statements.
In case of an inlined enumeration type, the "Description" column shall define the allowed values and
their meanings, as follows: "Permitted values:" on one line, followed by one paragraph of the
following format for each value: "- VAL: Meaning of the value".

>

Table X.6.2.2-1: Definition of the <TypeName1> data type

Attribute name Data type Cardinality Description

<Template note: Start of Example>

This type represents a foobar indicator. Typically, this corresponds to one distinct stream signalled by foobar. It shall

comply with the provisions defined in table X.6.2.2-2.

Table X.6.2.2-2: Definition of the FooBarIndicator data type

Attribute name Data type Cardinality Description

type FooBarType 1 Indicates whether this is a foo, boo or hoo stream.

entryIdx UnsignedInt 0..N The index of the entry in the signaling table for
correlation purposes, starting at 0.

terminationType Enum (inlined)

1 Signals type of termination.

Permitted values:

- FORCEFUL: The VNFM will shut down the VNF and
release the resources immediately after accepting
the request.

- GRACEFUL: The VNFM will first arrange to take the
VNF out of service after accepting the request. Once
the operation is successful or once the timer value
specified in the “gracefulTerminationTimeout”
attribute expires, the VNFM will shut down the VNF
and release the resources.

firstChoice MyChoiceOneType 0..1 First choice. See NOTE.

secondChoice MyChoiceTwoType 0..N Second choice. See NOTE.

nestedStruct Structure (inlined) 0..1 A structure that is inlined, rather than referenced via an
external type.

> someId String 1 An identifier. The level of nesting is indicated by ">".

> myNestedStruct Structure (inlined) 0..N Another nested structure, one level deeper.

>> child String 1 Child node at nesting level 2, indicated by ">>"

NOTE: One of “firstChoice” or at least one of “secondChoice” but not both shall be present.

 NFVSOL(18)000100r2

 35/44

<Template note: End of Example>

X.6.3 Referenced structured data types

X.6.3.1 Introduction

This clause defines data structures that can be referenced from data structures defined in the previous clauses, but can

neither be resource representations nor bound to any subscribe/notify mechanism.

X.6.3.2 Type: <TypeName3>

<Template note: Same structure as in X.6.2.2>

X.6.4 Referenced simple data types and enumerations

X.6.4.1 Introduction

This clause defines simple data types that can be referenced from data structures defined in the previous clauses.

<Template note: This covers simple types, including enumerations.>

X.6.4.2 Simple data types

The simple data types defined in table X.6.4.2-1 shall be supported.

Table X.6.4.2-1: Simple data types

Type name Description

X.6.4.3 Enumeration: <TypeName4>

The enumeration <TypeName4> represents <something>. It shall comply with the provisions defined in table X.6.4.3-

1.

Table X.6.4.3-1: Enumeration <TypeName4>

Enumeration value Description

 NFVSOL(18)000100r2

 36/44

Annex B: Guidance for managing API version identifiers

B.1 API versioning

See clause 9 of ETSI GS NFV-SOL 013 [3].

B.2 Visibility of the API version identifier fields in the OpenAPI
specifications

The resource URI of every API is structured as follows:

{apiRoot}/{apiName}/{apiMajorVersion}/,

where apiVersion is the concatenation of the letter “v” and the "MAJOR" field of the version identifier.

The "MINOR" and "PATCH" fields shall not be included in the resource URI.

NOTE: Including these digits in the URI would force the API client to select a specific sub-version, at the risk of

seeing the request rejected if the API provider does not support it, while the request could have been

served by ignoring unknown elements.

The full API version identifier (as defined in clause 9 of ETSI GS NFV-SOL 013) shall be visible in the OpenAPI

specifications, in the “version” subfield of the “info” field, as illustrated below. The "impl" parameter shall be used to

signal the version of the OpenAPI representation of the API, using the following structure:

etsi.org:ETSI_NFV_OpenAPI:<impl_version>, where <impl_version> is a number.

swagger: "2.0"

info:

 version: "1.2.0-impl:etsi.org:ETSI_NFV_OpenAPI:1"

 title: SOL003 – VNF LCM interface

 license:

 name: "ETSI Forge copyright notice"

 url: https://forge.etsi.org/etsi-forge-copyright-notice.txt

...

B.3 Relation to the base GS version identifier

There is no one-to-one mapping between an API version identifier and the version identifier of its base GS.

A GS specifies multiple APIs, which may have different versions.

A change in the 3rd field of a GS version identifier (i.e. an editorial change) should not lead to a change in the version

identifiers of the APIs specified in the GS.

A change in the 1st and 2nd fields of the GS version identifier is likely to lead to at least a change in the minor version

number of the APIs specified in the GS, which is documented in the definition of the applicable API version in the GS.

For example, if version 2.4.1 of a base GS contains version 1.1.1 of API A, B and C, version 3.1.1 of this base GS can

contain version 1.2.1 of API A, version 2.1.1 of API B and version 1.1.1 of API C (if no changes were made).

Each OpenAPI specification shall provide in an “externalDoc” field the reference of the base GS, including the version

identifier, as illustrated below.

swagger: "2.0"

info:

 version: "1.2.0-impl:etsi.org:ETSI_NFV_OpenAPI:1"

 title: SOL003 - VNF LCM interface

 description: The VNF LCM API provide access to VNF lifecycle management services

 license:

 name: "ETSI Forge copyright notice"

 url: https://forge.etsi.org/etsi-forge-copyright-notice.txt

externalDocs

 description: ETSI GS NFV-SOL 003 version 2.3.1

 NFVSOL(18)000100r2

 37/44

 url : http://www.etsi.org/deliver/etsi_gs/NFV-SOL/001_099/003/02.03.01_60/gs_nfv-

sol003v020301p.pdf

...

Multiple versions of the same GS can contain the same API (e.g., SOL003 VNF LCM API) without any modification.

In this case, all GS SOL003 versions supporting the same API should be listed in the “description” subfield.

http://www.etsi.org/deliver/etsi_gs/NFV-SOL/001_099/003/02.03.01_60/gs_nfv-sol003v020301p.pdf
http://www.etsi.org/deliver/etsi_gs/NFV-SOL/001_099/003/02.03.01_60/gs_nfv-sol003v020301p.pdf

 NFVSOL(18)000100r2

 38/44

Annex C: Change requests classification

C.1 Introduction

This annex provides guidelines on how to fill the “Other comments” field of the Change Request (CR) template when

submitting a CR on SOL API specifications. Il also provides some examples of BackWard Compatible (BWC) and

Non-BackWard Compatible (NBWC) changes to be specified in the CR template.

C.2 The Field “Other comments”

The field “Other comments” of the CR template shall contain at least the following two sub-fields:

• Change type,

• Change type code(s) (CTC).

The value of “Change type” and “Change type code(s)” sub-fields shall be set according to the following rules when

submitting a CR.

1) “Change type” identifies whether the changes proposed in the CR are BackWard Compatible (BWC), Non-

BackWard Compatible (NBWC) or whether backward compatibility is Not Applicable (N/A) to these changes.

If at least one of the proposed changes in the CR is NBWC, then “Change type” shall be set to NBWC.

2) Valid values for the sub-field “Change type code(s)” are defined in the following clauses and are qualifiers of

the sub-field “Change type ”.When “Change type” is set to BWC then the “Change type codes” are defined in

clause C.3. In case “Change type” is set to NBWC then the “Change type codes” are defined in clause C.4.

3) When “Change type” is set to Not Applicable (N/A) then the “Change type code(s)” sub-field shall not be

filled.

This approach is illustrated in the figure C.2-1

CHANGE REQUEST

 Version CR rev -

CR Title:

Source:

Work Item Ref: Date:

Category: Release:

 Use one of the following categories:

F (correction)

 NFVSOL(18)000100r2

 39/44

A (corresponds to a correction in an earlier release)

B (addition of feature)

C (functional modification of feature)

D (editorial modification)

Reason for change:

Summary of change:

Clauses affected:

Other deliverables

affected:

Other comments: Change type (BWC, NBWC or N/A):

Change type code(s):

Figure C.2-1: Other comments field with Change Type and Change Type Code(s)

C.3 Examples of BWC Changes

Examples of BWC changes include:

• Adding a new resource

• Adding a new URI

• Supporting a new HTTP method for an existing resource

• Adding new optional URI query parameters

• Adding new optional attributes to a resource representation in a request

• Adding new attributes to a resource representation in a response or to a notification message

• Responding with a new status code of an error class

• Certain cardinality changes (see note 1 in Table C.3-1)

Table C.3-1 defines the list of change type codes for BWC changes on the API.

 NFVSOL(18)000100r2

 40/44

Table C.3-1: Change type codes for BWC changes

BWC Change Type Change Type Code

Adding a new resource BWC_ADD_RESOURCE

Adding a new URI BWC_ADD_URI

Supporting a new HTTP method for an existing
resource

BWC_ADD_METHOD

Adding new optional URI query parameters BWC_ADD_OPT_QUERY_PARAMS

Adding new optional attributes to a resource
representation in a request

BWC_ADD_OPT_ATTR_REQST

Adding new attributes to a resource representation
in a response or to a notification message

BWC_ADD_ATTR_NOTIF

Responding with a new status code of an error class BWC_NEW_STATUS_CODE

Certain BWC cardinality changes BWC_CARD_CHGS

See note 1.

Error correction BWC_ERROR_CORR

See note 2.

Other BWC_OTHER

See note.3.

NOTE 1: Whether attribute cardinality changes are backward compatible depends on the
type of change. An example of a backward-compatible cardinality change include
making an attribute in a response required (e.g. changing cardinality from 0..1 to
1).

NOTE 2: A change that corrects an error that would lead the API producer to always send
an error response if a certain valid condition is met is considered a backward
compatible change, irrespective of the type of change.

NOTE 3: A BWC change type code equal to “OTHER_BWC” is defined to represent any
BWC change besides those explicitly defined in this table.

C.4 Examples of NBWC Changes

Examples of NBWC changes to the resources structure include:

• Removing a resource / URI

• Removing support for an HTTP method

• Changing a resource URI

• Adding new mandatory URI query parameters

Examples of NBWC changes to the payload body include:

• Renaming an attribute in a resource representation

• Adding new mandatory attributes to a resource representation in a request

• Changing the data type of an attribute

• Certain cardinality changes (see note 2 in Table C.3-2)

Table C.3-2 defines the list of change type codes for NBWC changes on the API.

 NFVSOL(18)000100r2

 41/44

Table C.3-2: Change type codes for NBWC changes

NBWC
Category

NBWC Change Type Change Type Code

Resource
Structure
Changes

Removing a resource NBWCR_REMOVE_RESOURCE

Removing a URI NBWCR_REMOVE_URI

Removing support for an
HTTP method

REMOVE_METHOD

Changing a resource
URI

NBWCR_CHG_URI

Adding new mandatory
URI query parameters

NBWCR_ADD_MAND_QUERY_PARAMS

Other NBWC changes to
the resources structure

NBWCR_OTHER

See note 1.

Payload Body
Changes

Renaming an attribute in
a resource
representation

NBWCP_RENAME_ATTR

Adding new mandatory
attributes to a resource
representation in a
request

NBWCP_ADD_MAND_ATTR_REQST

Changing the data type
of an attribute

NBWCP_CHG_DATA_TYPE

Certain NBWC
cardinality changes

NBWCP_CARD_CHGS

See note 2.

Other NBWC changes to
the payload body

NBWCP_OTHER

See note 3.

NOTE 1: A NBWC change type code equal to “NBWCR_OTHER” is defined to
represent any NBWC change to the resources structure besides those
explicitly defined in this table.

NOTE 2: Whether attribute cardinality changes are backward compatible depends on
the type of change. Examples of non-backward compatible cardinality
changes include decreasing the upper bound of a cardinality range for
attributes sent by the client and changing the meaning of the default
behaviour associated to the absence of an attribute of cardinality 0..N,

NOTE 3: A NBWC change type code equal to “NBWCP_OTHER” is defined to
represent any NBWC change to the payload body besides those explicitly
defined in this table.

 NFVSOL(18)000100r2

 42/44

Annex D: History

 NFVSOL(18)000100r2

 43/44

Revision Date Changes

(16)00070 12 Sept
2016

Skeleton provided

(16)00070r1 22 Sept
2016

Included contributions agreed at the SOL#10 meeting in Sophia Antipolis

- NFVSOL(16)000075r1_API_conventions_process

- NFVSOL(16)000069r3_SOL_REST_API_conventions_for_names_in_URIs

- NFVSOL(16)000074r5_Conventions_for_message_flows

(16)00070r2 13 Oct 2016 Included contributions agreed at the SOL#11 call

- NFVSOL(16)000090_SOL_REST_API_conventions_for_names_in_data_stru
ctures

- NFVSOL(16)000104r2_SOL002 SOL003 REST API document
template_update

(16)00070r3 13 Oct 2016 Replaces r2 package file which was faulty.

(16)00070r4 29 Oct 2016 Included contributions agreed at the SOL#12 meeting, Bundang

- NFVSOL(16)000123r2_Conventions_change_adding_inline_structures

- NFVSOL(16)000125r2_Conventions_for_JSON_Schema (rapporteur's
change: Style of JSON schema reference aligned with agreement in document
100r3 (JSON Annex for SOL003)

- NFVSOL(16)000130r2_Conventions_Pattern_for_subscribe_notify

- NFVSOL(16)000133r1_Conventions_-_Pattern_for_links (rapporteur's
change: removed reference to JSON language from "5.2 Pattern for links"
because the present document has no references clause)

- NFVSOL(16)000135_Conventions_for_opt_group_in_flows

- NFVSOL(16)000136_Conventions_change_of_definitition_of_data_schema_f
or_entity

(16)00070r5 12 Nov 2016 Included contributions agreed at the SOL#13 call

- NFVSOL(16)000145r2_Conventions_simplifying_the_table

(16)00070r6 18 Nov 2016 Included contributions agreed at the SOL#15 call

- NFVSOL(16)000142r2_Conventions_for_inline_enums
with the following modification: EditHelp discourages the use of own
paragraph style templates in GSs. Therefore, the following sentence has not
been incorporated into the present document when implementing
NFVSOL(16)000142r2: "Microsoft Word paragraph style shall be
"SOLInlineEnum" (copy the example from the table below to inject the style
into your document)".

(16)00070r7 15 Dec 2016 Included contributions agreed at the SOL#16 F2F in Shenzhen

- NFVSOL(16)000199_Template_update

- NFVSOL(16)000209_Conventions_nicer_tables

(16)00070r8 12 Jan 2017 Included contributions agreed in the SOL#17 call

- NFVSOL(17)000002_Conventions_splitting_subscribe_and_notify

 NFVSOL(18)000100r2

 44/44

(17)00050 25 Jan 2017 Included contributions agreed at SOL#18 F2F

- NFVSOL(16)000185r2

- NFVSOL(17)000030_Conventions_change_of_error_handling_in_resources_
clause

(17)00050r1 30 Jan 2017 Included one more agreed contribution from SOL#18

- NFVSOL(17)000035r1_SOL003_LCM_flow_update

(17)00050r2 28 Feb 2017 Included contributions from SOL#19 call and SOL#20 F2F (Bilbao)

- NFVSOL(17)000054_Conventions_Replace_URL_by_URI

- NFVSOL(17)000084r1_Template_changes_for_error_handling

- Removed "Data type" column from table X.3.3.3.1-1 to align with a decision
made for the GS

- NFVSOL(17)000106_Conventions_Document_NFVSOL_17_000050__Swagg
er_Representatio

- NFVSOL(17)000111_SOL003_Conventions_move_Resource_structure_up_in
_the_TOC

- Aligned terminology LifecycleChangeNotificatzion
VnfLcmOperationOccurrenceNotification

(17)00050r3 27 Mar 2017 Included contributions from SOL#22 F2F Piscataway

- NFVSOL(17)000121_Conventions_three_parts_of_remarks_column

- NFVSOL(17)000187r1_SOL002_SOL003_Conventions_global_fix_for_normat
ive_statement

(17)00050r4 27 Jul 2017 Included NFVSOL(17)000502r3 to align with patterns that were introduced during the
development of SOL003, and to prepare the document for being shared on the ETSI
NFV external wiki.

(17)00050r5 13 Dec 2017 Included contributions from SOL#45 F2F (Sophia)

- NFVSOL(17)000595r5_Conventions_for_HTTP_methods_support

(18)000100 05 Mar 2018 Included contributions from calls between SOL#45 and SOL#55, and from SOL#55 F2F
(Sophia)

- NFVSOL(17)000700r7_APIs_-_Proposed_rules_for_versioning-clean

- NFVSOL(18)000062r1_Conventions_disambiguating_URI_parameter

- NFVSOL(18)000085_Conventions_404_error_note

(18)000100r1 04 May 2018 Included contributions from EA subsequent to SOL#55

- NFVSOL(18)000070r1_API_versions_-_Error_codes

- NFVSOL(18)000144_Conventions_Document_-
_Learning_supported_API_versions

(18)000100r2 22 Nov 2018 Included contributions

- NFVSOL(18)000526r5_Add_change_type_codes_for_backward_compatible_
_BWC__and_non

- NFVSOL(18)000675_API_conventions_update_for_SOL013

