
 NFVSOL(18)000100r1  

 1/46 

 

Title*: ETSI NFV SOL REST API Conventions 

  

from Source*: SOL WG 

Contact: Uwe Rauschenbach (as editor) 

  

input for Committee*: NFV SOL 

  

Contribution For*: Decision   

 Discussion   

 Information X  

  
Submission date*: 2018-05-04 

  

Meeting & Allocation: NFVSOL#55  

Relevant WI(s), or 
deliverable(s): 

  

 
 

 

 

 

ABSTRACT: This document collects all agreed REST API conventions to be applied to the ETSI 

NFV SOL REST APIs (including SOL002, SOL003 and SOL005).  

Document NFVSOL(18)000100 is a revision of document NFVSOL(17)000050r5 in the 
2018 document space. 

 

 

Table of Contents 

Table of Contents ............................................................................................................................................... 1 

1 Scope ........................................................................................................................................................ 3 

2 References ................................................................................................................................................ 3 

3 Process ...................................................................................................................................................... 3 

4 Conventions for names, strings and URIs ................................................................................................ 4 
4.1 Case conventions ............................................................................................................................................... 4 
4.2  Conventions for URI parts ................................................................................................................................. 5 
4.3  Conventions for names in data structures .......................................................................................................... 6 
4.4 Conventions for URI structure and supported content formats .......................................................................... 7 

5 Conventions for Message flows ............................................................................................................... 8 
5.1 Tool support ....................................................................................................................................................... 8 
5.2  Graphical conventions ....................................................................................................................................... 8 

6 API patterns ............................................................................................................................................ 11 
6.1 Pattern: Subscribe-Notify ................................................................................................................................ 11 
6.1.1 Description ................................................................................................................................................. 11 



 NFVSOL(18)000100r1  

 2/46 

6.1.2 Resource definition(s) and HTTP methods ................................................................................................ 13 
6.1.3 Resource representation(s) ......................................................................................................................... 13 
6.1.4 HTTP Headers ............................................................................................................................................ 13 
6.1.5 Response codes and error handling ............................................................................................................ 14 
6.2 Pattern: Links ................................................................................................................................................... 14 
6.2.1 Description ................................................................................................................................................. 14 
6.2.2 Resource definition(s) and HTTP methods ................................................................................................ 14 
6.2.3 Resource representation(s) ......................................................................................................................... 14 
6.2.4 HTTP Headers ............................................................................................................................................ 15 
6.2.5 Response codes and error handling ............................................................................................................ 15 
6.3 Pattern: Resource creation (POST) .................................................................................................................. 15 
6.3.1 Description ................................................................................................................................................. 15 
6.3.2 Resource definition(s) and HTTP methods ................................................................................................ 16 
6.3.3 Resource representation(s) ......................................................................................................................... 16 
6.3.4 HTTP Headers ............................................................................................................................................ 16 
6.3.5 Response codes and error handling ............................................................................................................ 16 
6.4 Pattern: Reading a resource (GET) .................................................................................................................. 16 
6.4.1 Description ................................................................................................................................................. 16 
6.4.2 Resource definition(s) and HTTP methods ................................................................................................ 17 
6.4.3 Resource representation(s) ......................................................................................................................... 17 
6.4.4 HTTP Headers ............................................................................................................................................ 17 
6.4.5 Response codes and error handling ............................................................................................................ 17 
6.5 Pattern: Resource query with filtering/selection (GET) ................................................................................... 17 
6.5.1 Description ................................................................................................................................................. 17 
6.5.2 Attribute-based filtering ............................................................................................................................. 17 
6.5.3 Attribute selectors ...................................................................................................................................... 19 
6.6 Pattern: Resource update (PATCH) ................................................................................................................. 21 
6.6.1 Description ................................................................................................................................................. 21 
6.6.2 Resource definition(s) and HTTP methods ................................................................................................ 22 
6.6.3 Resource representation(s) ......................................................................................................................... 22 
6.6.4 HTTP Headers ............................................................................................................................................ 23 
6.6.5 Response codes and error handling ............................................................................................................ 23 
6.7 Pattern: Resource deletion (DELETE) ............................................................................................................. 23 
6.7.1 Description ................................................................................................................................................. 23 
6.7.2 Resource definition(s) and HTTP methods ................................................................................................ 23 
6.7.3 Resource representation(s) ......................................................................................................................... 24 
6.7.4 HTTP Headers ............................................................................................................................................ 24 
6.7.5 Response codes and error handling ............................................................................................................ 24 
6.8 Pattern: Asynchronous invocation with monitor.............................................................................................. 24 
6.8.1 Description ................................................................................................................................................. 24 
6.8.2 Resource definition(s) and HTTP methods ................................................................................................ 26 
6.8.3 Resource representation(s) ......................................................................................................................... 26 
6.8.4 HTTP Headers ............................................................................................................................................ 26 
6.8.5 Response codes and error handling ............................................................................................................ 26 
6.9 Pattern: Asynchronous resource creation without monitor .............................................................................. 27 
6.9.1 Description ................................................................................................................................................. 27 
6.9.2 Resource definition(s) and HTTP methods ................................................................................................ 27 
6.9.3 Resource representation(s) ......................................................................................................................... 27 
6.9.4 HTTP Headers ............................................................................................................................................ 28 
6.9.5 Response codes and error handling ............................................................................................................ 28 
6.10 Task resources ................................................................................................................................................. 28 
6.10.1 Description ................................................................................................................................................. 28 
6.10.2 Resource definition(s) and HTTP methods ................................................................................................ 28 
6.10.3 Resource representation(s) ......................................................................................................................... 28 
6.10.4 HTTP Headers ............................................................................................................................................ 28 
6.10.5 Response codes and error handling ............................................................................................................ 28 
6.11 Pattern: Authorization ...................................................................................................................................... 29 
6.12 Pattern: Error reporting .................................................................................................................................... 29 
6.12.1 Introduction ................................................................................................................................................ 29 
6.12.2 General mechanism .................................................................................................................................... 29 
6.12.3 Type: ProblemDetails ................................................................................................................................. 29 
6.12.4 Common error situations ............................................................................................................................ 30 
6.12.5 Specific HTTP error status codes ............................................................................................................... 31 



 NFVSOL(18)000100r1  

 3/46 

Annex A: REST API template for interface clauses ........................................................................................ 31 

X <Long API name> interface ................................................................................................................... 31 
X.1 Description ....................................................................................................................................................... 31 
X.2 Resource structure and methods ...................................................................................................................... 32 
X.3 Sequence diagrams .......................................................................................................................................... 34 
X.3.1 <Procedure 1> ............................................................................................................................................ 34 
X.3.2 <Procedure 2> ............................................................................................................................................ 35 
X.4 Resources ......................................................................................................................................................... 35 
X.4.1 Introduction ................................................................................................................................................ 35 
X.4.2 Resource: <Meaning> ................................................................................................................................ 35 
X.5 Data model ....................................................................................................................................................... 39 
X.5.1 Introduction ................................................................................................................................................ 39 
X.5.2 Resource and notification data types .......................................................................................................... 39 
X.5.3 Referenced structured data types ................................................................................................................ 41 
X.5.4 Referenced simple data types and enumerations ........................................................................................ 41 

Annex B: Guidance for managing API version identifiers ............................................................................... 42 
B.1 Terminology .................................................................................................................................................... 42 
B.2 Structure of API version identifiers ................................................................................................................. 42 
B.3  Rules for incrementing field values ................................................................................................................. 42 
B.4 Visibility of the API version identifier fields ................................................................................................... 43 
B.5 Relation to the base GS version identifier ....................................................................................................... 43 
B.6 Learning the supported versions ...................................................................................................................... 44 
B.7 Migration to a new major version .................................................................................................................... 44 

Annex C: History .............................................................................................................................................. 45 
 

 

1 Scope 

This living document collects the conventions for the ETSI NFV REST APIs as agreed by the ETSI NFV SOL 
working group. It is a document that is intended for ETSI NFV SOL to guide the development of the ETSI 
NFV SOL REST API specifications. An example for an API developed based on the conventions in this 
document can be found in [1]. 

 

2 References 

[1] ETSI GS NFV-SOL 003: "Network Functions Virtualisation (NFV) Release 2; Protocols and Data 

Models; RESTful protocols specification for the Or-Vnfm Reference Point". Available from:  

http://www.etsi.org/deliver/etsi_gs/NFV-SOL/001_099/003/02.03.01_60/gs_NFV-

SOL003v020301p.pdf   

[2] PlantUML website, http://plantuml.com/ 

 

3 Process 

This document is classified as "for information". It collects all REST API conventions that were agreed by ETSI NFV 

SOL. Each convention shall be proposed by a contribution to ETSI NFV SOL for decision, clearly indicating the 

additions / changes to the present document. Once Accepted by ETSI NFV SOL, the changes will be incorporated by 

the editor into a new revision of the conventions document. 

Even though the present document is classified as "For Information", the conventions and patterns contained in it are 

binding for ETSI NFV SOL when developing the SOL REST APIs, since the document reflects content that was agreed 

by group decision. To deviate from the agreed conventions for particular contributions requires SOL WG consensus. 

 

http://www.etsi.org/deliver/etsi_gs/NFV-SOL/001_099/003/02.03.01_60/gs_NFV-SOL003v020301p.pdf
http://www.etsi.org/deliver/etsi_gs/NFV-SOL/001_099/003/02.03.01_60/gs_NFV-SOL003v020301p.pdf
http://plantuml.com/


 NFVSOL(18)000100r1  

 4/46 

4 Conventions for names, strings and URIs 

4.1 Case conventions 

The following case conventions for names and strings are available for potential use in the Stage 3 specifications.  

 

1. ALLUPPER 

 

All letters of a string are capital letters. Digits are allowed but not at the first position. No other 

characters are allowed. 

 

EXAMPLES: 

a. MANAGEMENTINTERFACE 

b. ETSINFVMANAGEMENT 

 

 

2. alllower 

 

All letters of a string are lowercase letters. Digits are allowed but not at the first position. No other 

characters are allowed. 

 

EXAMPLES: 

a. managementinterface 

b. etsinfvmanagement 

 

 

3. UPPER_WITH_UNDERSCORE 

 

All letters of a string are capital letters. Digits are allowed but not at the first position. Word 

boundaries are represented by the underscore "_" character. No other characters are allowed.  

 

EXAMPLES: 

a. MANAGEMENT_INTERFACE 

b. ETSI_NFV_MANAGEMENT 

 

4. lower_with_underscore 

 

All letters of a string are lowercase letters. Digits are allowed but not at the first position. Word 

boundaries are represented by the underscore "_" character. No other characters are allowed.  

 

EXAMPLES: 

a. management_interface 



 NFVSOL(18)000100r1  

 5/46 

b. etsi_nfv_management. 

 

5. UpperCamel  

 

A string is formed by concatenating words. Each word starts with an uppercase letter (this implies 

that the string starts with an uppercase letter). All other letters are lowercase letters. Digits are 

allowed but not at the first position. No other characters are allowed. Abbreviations follow the same 

scheme (i.e. first letter uppercase, all other letters lowercase).  

 

EXAMPLES: 

a. ManagementInterface 

b. EtsiNfvManagement 

 

6. lowerCamel  

 

As UpperCamel, but with the following change: The first letter of a string shall be lowercase (i.e. the 

first word starts with a lowercase letter).  

 

EXAMPLES: 

a. managementInterface 

b. etsiNfvManagement. 

 

 

 

4.2  Conventions for URI parts  

Based on IETF RFC 3986, the parts of the URI syntax that are relevant in the context of the ETSI NFV SOL 
REST API are follows. 

• Path, consisting of segments, separated by "/" (e.g. segment1/segment2/segment3) 

• Query, consisting of pairs of parameter name and value (e.g., ?org=nfv&group=sol) 

 

Decision 1. Path Segment Naming Conventions. 

a. The path segments of a resource URI which represent a constant string shall use 
lower_with_underscore. 
 
EXAMPLE: vnf_instances 
 

b. If a resource represents a collection of entities, the last path segment of that resource's URI 
shall be plural. 
 
EXAMPLE: …/prefix/API/1_0/users 
 

c. For resources that are not task resources, the last path segment of the resource URI should be a 
(composite) noun. 
 



 NFVSOL(18)000100r1  

 6/46 

EXAMPLE: …/prefix/API/1_0/users 
 

d. For resources that are task resources, the last path segment of the resource URI should be a 
verb, or at least start with a verb. 
 
EXAMPLES:  
…/vnf_instances/{vnfInstanceId}/scale 
…/vnf_instances/{vnfInstanceId}/scale_to_level 
 

e. A variable name which represents a single path segment or a sequence of one or more path 
segments of a resource URI shall use lowerCamel, and shall be surrounded by curly brackets. A 
variable in the path part of a resource URI represents a single path segment unless it is explicitly 
specified that it represents one or more path segments. 
 
EXAMPLE: {vnfInstanceId} 
 

f. Once a variable is replaced at runtime by an actual string, the string shall follow the rules for a 
single path segment or one or more path segments defined in IETF RFC 3986. IETF RFC 3986 
disallows certain characters from use in a path segment. Each actual ETSI NFV SOL API 
specification shall define this restriction to be followed when generating values for variables 
that represent a single path segment or one or more path segments, or propose a suitable 
encoding (such as percent-encoding according to IETF RFC 3986), to escape such characters if 
they can appear in input strings intended to be substituted for a path segment variable. 

 

Decision 2. Query Naming Conventions 

a. Parameter names in queries shall use lower_with_underscore. 
 
EXAMPLE: ?working_group=SOL 
 

b. Variables that represent actual parameter values in queries shall use lowerCamel and shall be 
surrounded by curly brackets. 
 
EXAMPLE: ?working_group={chooseAWorkingGroup} 
 

c. Once a variable is replaced at runtime by an actual string, the convention defined in Decision1.f. 
applies to that string. 

 

4.3  Conventions for names in data structures  

The following syntax conventions shall be obeyed when defining the names for attributes and parameters in 

the ETSI NFV SOL REST API data structures. 

 

a. Names of attributes / parameters shall be represented using lowerCamel.  

 

EXAMPLE: vnfName 

 

NOTE: It is assumed that, deviating from this rule, the names of attributes/parameters in the VNFD in 

SOL001 use lower_with_underscore. 

 



 NFVSOL(18)000100r1  

 7/46 

b. Names of arrays (i.e., those with cardinality 1..N or 0..N) shall be plural rather than singular. 

 

EXAMPLES: users, extVirtualLinks 

 

c. "True" identifiers defined in IFA007 and IFA008 using the name syntax "xyzStructureId" shall be represented 

using the name "id." 

 

NOTE:  In IFA007/8, the name of an attribute that is a "true" identifier of a data structure "XyzStructure" uses the 

name syntax "xyzStructureId". The term "true" identifier denotes an identifier embedded in 

"XyzStructure" for identifying and/or externally referencing an instance of that structure. 

 

d. Each value of an enumeration types shall be represented using UPPER_WITH_UNDERSCORE. 

 

EXAMPLE: NOT_INSTATIATED 

 

e. The names of data types shall be represented using UpperCamel. 

 

EXAMPLES: ResourceHandle, VnfInstance 

 

4.4 Conventions for URI structure and supported content 
formats 

This clause specifies the URI prefix and the supported formats applicable to the APIs defined in the present document. 

All resource URIs of the APIs shall have the following prefix: 

{apiRoot}/{apiName}/{apiVersion}/ 

 where 

{apiRoot} indicates the scheme ("http" or "https"), the host name and optional port, and an optional 

sequence of path segments that together represent a prefix path.  

{apiName} indicates the interface name in an abbreviated form. The {apiName} of each interface is 

defined in the clause specifying the corresponding interface.  

{apiVersion}  indicates the current version of the API and is defined in the clause specifying the 

corresponding interface.  

For HTTP requests and responses that have a body, the content format JSON (see IETF RFC 7159) shall be supported. 

The JSON format shall be signalled by the content type "application/json". 

All APIs shall support and use HTTP over TLS (also known as HTTPS) (see IETF RFC 2818). TLS version 1.2 as 

defined by IETF RFC 5246 shall be supported. 

All resource URIs of the API shall comply with the URI syntax as defined in IETF RFC 3986. An implementation that 

dynamically generates resource URI parts (individual path segments, sequences of path segments that are separated by 

"/",  query parameter values) shall ensure that these parts only use the character set that is allowed by IETF RFC 3986 

for these parts.  

NOTE 1:  This means that characters which are not part of this allowed set need to be escaped using percent-

encoding as defined by IETF RFC 3986. 

Unless otherwise specified explicitly, all request URI parameters that are part of the path of the resource URI shall be 

individual path segments, i.e. shall not contain the "/" character.  

NOTE 2: A request URI parameter is denoted by a string in curly brackets, e.g. {subscriptionId}. 

 



 NFVSOL(18)000100r1  

 8/46 

 

5 Conventions for Message flows  

5.1 Tool support 

To obtain a unique appearance of all flow diagrams in the REST specifications, ETSI NFV SOL uses the free tool 

PlantUML [2]. 

 

The tool can be obtained here: https://sourceforge.net/projects/plantuml/files/plantuml.jar/download.  

Documentation can be obtained here: http://plantuml.com/PlantUML_Language_Reference_Guide.pdf.  

 

The appearance of the diagrams is controlled by the "skin.inc" file which shall be included in every PlantUML source, 

as follows: 

• Save the text below in a text file named "skin.inc" and pPut it into the same directory as the 

PlantUML source file  

skinparam monochrome true 

skinparam sequenceActorBackgroundColor #FFFFFF 

skinparam sequenceParticipantBackgroundColor #FFFFFF 

skinparam noteBackgroundColor #FFFFFF 

autonumber "#'.'" 

 

• Use these instructions at the beginning of the PlantUML source file to include the file 

@startuml 

!include skin.inc 

 

• When making a contribution, ensure to include the PlantUML source file in a ZIP archive with the 

contribution 

 

5.2  Graphical conventions 

1) An HTTP request is represented by a solid arrow (->) with the method name, followed by the URI, followed by an 

indication of the type of the entity body, if applicable. 

EXAMPLE: client -> server: POST …/vnf_instances (FooBarType) 

 

2) An HTTP response is represented by a solid arrow (->) with the response code, followed by the meaning of the 

response code, followed by an indication of the type of the entity body, if applicable. 

 EXAMPLE: server -> client: 201 Created (FooBarType) 

 

3) If it is necessary to call out a particular attribute in the entity body for later reference, use the syntax 

<type>;<attribute>=<value> 

 EXAMPLE: server -> client: 201 Created (FooBarType:id=123) 

 

4) A condition, postcondition, or precondition, if needed, is expressed as a note over client and server. 

 EXAMPLE: note over client, server 

https://sourceforge.net/projects/plantuml/files/plantuml.jar/download
http://plantuml.com/PlantUML_Language_Reference_Guide.pdf


 NFVSOL(18)000100r1  

 9/46 

   Precondition: Everything was prepared 

  end note 

 

5) A processing step, if there is no need to number it, or a comment, is expressed as a note over client or server. 

 EXAMPLE: note over server 

   Update internal database 

  end note 

 

6) A processing step, if there is the need to automatically number it for reference from the text, is expressed as a "signal 

to self" at server or client side, with a dashed slim-headed arrow. 

 EXAMPLE: server -->> server: Update internal database 

 

7) HTTP requests and responses shall be numbered, with an increment of one. The necessary definitions for automatic 

numbering are included in skin.inc. 

 

8) A message or message exchange of which the details are defined elsewhere is represented with a dashed slim-headed 

arrow and set in italics. 

 EXAMPLE: server -->> client: <i>Send XyzNotification</i> 

 

9) A sequence of messages that is optional to execute, and the associated notes, are enclosed into an "opt" section. 

 EXAMPLE:  

opt 

 client -> server: GET …/nice_to_have 

 server -> client: 200 OK (NiceToHaveType) 

end 

 

 

An overall example that illustrates the provisions above is given in the figures 5.2-1 and 5.2-2.  

 

NOTE:  This illustrates VNF instantiation but may differ from the actual technical content that will eventually be 

agreed for inclusion into the GS. 

 

 

@startuml 

!include skin.inc 

participant "NFVO" as cli 

participant "VNFM" as srv 

  

note over cli, srv 

 Precondition: VNF instance does not exist 

end note 

 

cli -> srv: POST …/vnf_instances (VnfInstance) 



 NFVSOL(18)000100r1  

 10/46 

srv -> cli: 201 Created (VnfInstance:links.self=…/vnf_instances/123) 

 

note over cli, srv 

 Condition: VNF instance in NOT_INSTANTIATED state 

end note  

 

cli -> srv: POST …/vnf_instances/123/instantiate (InstantiateParams) 

srv -> cli: 202 Accepted () 

 

srv -->> cli: <i> Send VnfLcmOperationOccurrenceNotification (start)</i> 

 

opt 

note over cli 

  Client polls the VNF lifecycle  

  operation occurrence resource 

end note  

end 

cli -> srv: GET …/vnf_lc_ops/abcxyz456 

srv -> cli: 200 OK (LcOpOcc:status=processing) 

 

srv -->> srv: Instantiation finished 

 

srv -->> cli: <i>Send VnfLcmOperationOccurrenceNotification (result)</i> 

 

opt 

cli -> srv: GET …/vnf_lc_ops/abcxyz456 

srv -> cli: 200 OK (LcOpOcc:status=success) 

end 

 

note over cli, srv 

 Postcondition: VNF instance in INSTANTIATED state 

end note 

 

@enduml 

 

Figure 5.2-1: PlantUML source to illustrate the conventions defined above 

 

 

  



 NFVSOL(18)000100r1  

 11/46 

  

Figure 5.2-2: Flow diagram resulting from the PlantUML source in figure 5.2-1 

 

 

 

6 API patterns 

6.1 Pattern: Subscribe-Notify 

6.1.1 Description 

A common task in distributed systems is to keep all involved components informed of changes that appear in a 

particular component at a particular time. A common approach to spread information about a change is to distribute 

notifications about the change to those components that have indicated interest earlier on. Such pattern is known as 

Subscribe/Notify. In REST which is request-response by design, meaning that every request is initiated by the client, 

specific mechanisms need to be put into place to support the server-initiated delivery of notifications. The basic 

principle is that the REST client exposes a lightweight HTTP server towards the REST server. The lightweight HTTP 

server only needs to support a small subset of the HTTP functionality – namely the POST method, the 204 success 

response code plus the relevant error response codes, and, if applicable, authentication/authorization. The REST client 

exposes the lightweight HTTP server in a way that it is reachable via TCP by the REST server. 



 NFVSOL(18)000100r1  

 12/46 

To manage subscriptions, the REST server needs to expose a container resource under which the REST client can 

request the creation / deletion of individual subscription resources. Those resources typically define criteria of the 

subscription. Subscription resources can also be read using GET. Termination of a subscription is done by a DELETE 

request. 

To receive notifications, the client exposes one or more HTTP endpoints on which it can receive POST requests. When 

creating a subscription, the client informs the server of the endpoint (callbackUri) to which the server will later deliver 

notifications related to that particular subscription.  

To deliver notifications, the server includes the actual notification payload in the entity body of a POST request, and 

sends that request to the endpoint(s) it knows from the subscription(s). The client acknowledges the receipt of the 

notification with “204 No Content”. 

Figure 6.1.1-1 illustrates the management of subscriptions. Figure 6.1.1-2 illustrates the delivery of a notification.  

 

 

 

 

   



 NFVSOL(18)000100r1  

 13/46 

Figure 6.1.1-1: Management of subscriptions 

 

 

  

Figure 6.1.1-2: Delivery of notifications  

 

6.1.2 Resource definition(s) and HTTP methods 

The following resources are involved: 

1) Subscriptions resource: A resource that can hold zero or more subscription resources as child resources 

2) Individual subscription resource: A resource that represents a subscription 

3) An HTTP endpoint that is exposed by the REST client to receive the notifications 

The HTTP method to create a new individual subscription resource inside the subscriptions resource shall be POST. 

The HTTP method to terminate a subscription by removing an individual subscription resource shall be DELETE. The 

HTTP method to read the subscriptions resource and to read individual subscription resources shall be GET. 

The HTTP method used by the server to deliver notifications shall be POST. 

 

6.1.3 Resource representation(s) 

The following provisions are applicable to the representation of an individual subscription resource:  

- It shall contain the URI of an HTTP endpoint that the REST client exposes to receive notifications. That URI 

shall be provided by the client on subscription.  

- It should contain criteria that allow the server to determine the events about which the client wishes to be 

notified. APIs may deviate from this recommendation for instance when there are just one or two event types, 

or when it is essential that the client is informed about all events. 

 

The following provisions are applicable to the representation of a notification: 

- It shall contain a reference to the related subscription, using the "_links" attribute (see Pattern for links, clause 

6.2) 

- It shall contain information about the event. 

 

 

6.1.4 HTTP Headers 

No specific provisions are applicable here. 



 NFVSOL(18)000100r1  

 14/46 

 

6.1.5 Response codes and error handling 

On successful subscription creation, "201 Created" shall be returned. 

On successful subscription deletion, "204 No Content" shall be returned. 

On successfully reading an "individual subscription" resource or querying the "subscriptions" resource, "200 OK" shall 

be returned. 

On successful notification delivery, “204 No Content” shall be returned.  

On failure, the appropriate error code shall be returned. 

 

 

6.2 Pattern: Links  

6.2.1 Description 

It is commonly seen as good adherence to RESTful principles that resources link to other resources, allowing the client 

to traverse the resource space. Such principle is also known as "hypermedia controls" or HATEOAS (Hypermedia as 

the engine of application state). This clause describes a pattern for hyperlinks. 

Hyperlinks to other resources should be embedded into the representation of resources where applicable. For each 

hyperlink, the target URI of the link and information about the meaning of the link shall be provided. Knowing the 

meaning of the link (typically conveyed by the name of the object that defines the link, or by an attribute such as "rel") 

allows the client to automatically traverse the links to access resources related to the actual resource, in order to perform 

operations on them. 

 

6.2.2 Resource definition(s) and HTTP methods 

Links can be applicable to any resource and any HTTP method.  

  

6.2.3 Resource representation(s) 

Links are communicated in the resource representation. Links that occur at the same level in the representation shall be 

bundled in a JSON object, named "_links" which should occur as the first object at a particular level.  

Links shall be embedded in that JSON object as contained objects. The name of each contained object defines the 

semantics of the particular link. The content of each link object shall be an object named "href" of type string, which 

defines the target URI the link points to. The link to the actual resource shall be named "self" and shall be present in 

every resource representation if links are used in that API. 

As an example, the "_links" portion of a resource representation is shown that represents paged information. Figure 

6.2.3-3 illustrates the JSON schema and figure 6.2.3-4 illustrates the JSON object.  

"properties": { 

 "_links": { 

  "required": ["self"],  

  "type": "object",  

  "description": "Link relations",  

  "properties": { 

   "self": { 

          "$ref": "#/definitions/Link" 

   },  

         "prev": { 

          "$ref": "#/definitions/Link" 

   },  

        "next": { 

          "$ref": "#/definitions/Link" 

   } 



 NFVSOL(18)000100r1  

 15/46 

  } 

 } 

}, 

"definitions": { 

 "Link" : { 

  "type": "object", 

  "properties": { 

   "href": {"type": "string"} 

  }, 

       "required": ["href"] 

 } 

} 

Figure 6.2.3-3: JSON schema fragment for an example "_links" element 

 

{ 

 "_links": { 

  "self": { "href": "http://api.example.com/my_api/v1/pages/127" }, 

  "next": { "href": "http://api.example.com/my_api/v1/pages/128" }, 

  "prev": { "href": "http://api.example.com/my_api/v1/pages/126" } 

 } 

} 

Figure 6.2.3-4: JSON fragment for an example "_links" element 

 

6.2.4 HTTP Headers 

There are no specific provisions w.r.t. HTTP headers for this pattern. 

 

6.2.5 Response codes and error handling 

There are no specific provisions w.r.t. response codes and error handling for this pattern. 

 

6.3 Pattern: Resource creation (POST) 

6.3.1 Description 

New resources are created on the origin server as children of a parent resource. In order to request resource creation, the 

client sends a POST request to the parent resource and includes a representation of the resource to be created. The 

server generates an identifier for the new resource that is unique for all child resources in the scope of the parent 

resource, and concatenates this with the resource URI of the parent resource to form the resource URI of the child 

resource. The server creates the new resource, and returns in a "201 Created" response a representation of the created 

resource along with a "Location" HTTP header that contains the resource URI of this resource. 

 

Figure 6.3.1-1 illustrates creating a resource. 



 NFVSOL(18)000100r1  

 16/46 

 

Figure 6.3.1-1: Resource creation flow 

6.3.2 Resource definition(s) and HTTP methods 

The following resources are involved: 

1) parent resource: A container that can hold zero or more child resources; 

2) created resource: A child resource of a container resource that is created as part of the operation. The resource 

URI of the child resource is a concatenation of the resource URI of the parent resource with a string that is 

chosen by the server, and that is unique in the scope of the parent resource URI. 

The HTTP method shall be POST. 

 

6.3.3 Resource representation(s) 

The entity body of the request shall contain a representation of the resource to be created. The entity body of the 

response shall contain a representation of the created resource. 

NOTE: Compared to the entity body passed in the request, the entity body in the response may be different, as the 

resource creation process may have modified the information that has been passed as input, or generated 

additional attributes. 

6.3.4 HTTP Headers 

On success, the "Location" HTTP header shall be returned, and shall contain the URI of the newly created resource. 

 

6.3.5 Response codes and error handling 

On success, "201 Created" shall be returned. On failure, the appropriate error code shall be returned. 

Resource creation can also be asynchronous in which case "202 Accepted" shall be returned instead of "201 Created". 

See clauses 6.8 and 6.9 for more details about asynchronous operations. 

 

6.4 Pattern: Reading a resource (GET) 

6.4.1 Description 

This pattern obtains a representation of the resource, i.e. reads a resource, by using the HTTP GET method. For most 

resources, the GET method should be supported. An exception is task resources (see clause 6.10); these cannot be read. 

 

Figure 6.4.1-1 illustrates reading a resource. 



 NFVSOL(18)000100r1  

 17/46 

 

Figure 6.4.1-1: Reading a resource 

6.4.2 Resource definition(s) and HTTP methods 

This pattern is applicable to any resource that can be read. The HTTP method shall be GET. 

6.4.3 Resource representation(s) 

The entity body of the request shall be empty; the entity body of the response shall contain a representation of the 

resource that was read, if successful. 

6.4.4 HTTP Headers 

No specific provisions for HTTP headers for this pattern. 

6.4.5 Response codes and error handling 

On success, "200 OK" shall be returned. On failure, the appropriate error code shall be returned. 

 

6.5 Pattern: Resource query with filtering/selection (GET) 

6.5.1 Description 

This pattern influences the response of the GET method by passing resource URI parameters in the query part of the 

resource URI. Typically, this pattern is applied to container resources whose representation is a list of the child 

resources. 

Typically, query parameters are used for  

• restricting a set of objects to a subset, based on filtering criteria; 

• controlling the content of the result; 

• reducing the content of the result (such as suppressing optional attributes). 

 

6.5.2 Attribute-based filtering 

6.5.2.1 Overview and example 

Attribute-based filtering allows to reduce the number of objects returned by a query operation. Typically, attribute-

based filtering is applied to a GET request that reads a resource which represents a list of objects (e.g. child resources). 

Only those objects that match the filter are returned as part of the resource representation in the payload body of the 

GET response. 

Attribute-based filtering can test a simple (scalar) attribute of the resource representation against a constant value, for 

instance for equality, inequality, greater or smaller than, etc. Attribute-based filtering is requested by adding  a set of 

URI query parameters, the "attribute-based filtering parameters" or "filter" for short, to a resource URI. 

The following example illustrates the principle. Assume a resource "container" with the following objects: 

EXAMPLE 1:  objects 



 NFVSOL(18)000100r1  

 18/46 

obj1: {id:123, weight:100, parts:[{id:1, color:red}, {id:2, color:green}]} 

obj2: {id:456, weight:500, parts:[{id:3, color:green}, {id:2, color:green}]}  

A GET request on the "container" resource would deliver the following response: 

EXAMPLE 2:  Unfiltered GET 

Request:  
GET …/container 

Response: 
[ 

    {id:123, weight:100, parts:[{id:1, color:red}, {id:2, color:green}]},  

    {id:456, weight:500, parts:[{id:3, color:green}, {id:2, color:blue}]} 

]  

 

A GET request with a filter on the "container" resource would deliver the following response: 

EXAMPLE 3:  GET with filter 

Request: 
GET …/container?weight.eq=100 or GET …/container?weight=100 

Response:  
[ 

    {id:123, weight:100, parts:[{id:1, color:red}, {id:2, color:green}]}  

]  

For hierarchically-structured data, filters can also be applied to attributes deeper in the hierarchy. In case of arrays, a 

filter matches if any of the elements of the array matches. In other words, when applying the filter 

"parts.color.eq=green" (or "parts.color=green") to the objects in Example 1, the filter matches obj1 when evaluating the 

second entry in the "parts" array of obj1, and matches obj2 already when evaluating the first entry in the "parts" array of 

obj2. As the result, both obj1 and obj2 match the filter. 

If a filter contains multiple sub-parts that only differ in the leaf attribute (i.e. they share the same attribute prefix), they 

are evaluated together per array entry when traversing an array. As an example, the filter 

"parts.color.eq=green"&"parts.id.eq=3" (or "parts.color=green&parts.id=3") would be evaluated together for each entry 

in the array "parts". As the result, obj2 matches the filter. 

6.5.2.2 Specification 

A set of filter parameters shall be represented as a part of the URI query string. This means, it shall consist of one or 

more strings formatted according to "simpleFilterExpr", concatenated using the "&" character: 

simpleFilterExpr := <attrName>["."<attrName>]*["."<op>]?"="<value>[","<value>]* 

filterExpr       := <simpleFilterExpr>["&"<simpleFilterExpr>]* 

op               := "eq" | "neq" | "gt" | "lt" | "gte" | "lte" | "cont" |              

                    "ncont" 

attrName         := string 

value            := scalar value  

where: 
*  zero or more occurrences 

? zero or one occurrence  

[]  grouping of expressions to be used with ? and * 

""  quotation marks for marking string constants 

<>  name separator  

 

"AttrName" is the name of one attribute in the data type that defines the representation of the resource. The dot (".") 

character in "simpleFilterExpr" allows concatenation of <attrName> entries to filter by attributes deeper in the hierarchy 

of a structured document. "Op" stands for the comparison operator. If the expression has concatenated <attrName> 

entries, it means that the operator "op" is applied to the attribute addressed by the last <attrName> entry included in the 

concatenation. All simple filter expressions are combined by the "AND" logical operator.  

In a concatenation of <attrName> entries in a <simpleFilterExpr>, the rightmost <attrName> entry is called "leaf 

attribute". The concatenation of all "attrName" entries except the leaf attribute is called the "attribute prefix". If an 

attribute referenced in an expression is an array, an object that contains a corresponding array shall be considered to 

match the expression if any of the elements in the array matches all expressions that have the same attribute prefix. 



 NFVSOL(18)000100r1  

 19/46 

The leaf attribute of a <simpleFilterExpr> shall not be structured, but shall be of a simple (scalar) type such as String, 

Number or DateTime, or shall be an array of simple (scalar) attributes. Attempting to apply a filter with a structured leaf 

attribute shall be rejected with "400 Bad request". A <filterExpr> shall not contain any invalid <simpleFilterExpr> 

entry. 

The operators "op" listed in table 6.5.2.2-1 shall be supported. 

Table 6.5.2.2-1: Operators for attribute-based filtering 

Operator <op> Meaning 

<attrName>.eq=<value>[,<value>]* Attribute equal to one of the values in the list 

<attrName>=<value>[,<value>]* Alternative representation of equality. See note. 

<attrName>.neq=<value>[,<value>]* Attribute not equal to any of the values in the list 

<attrName>.gt=<value> Attribute greater than <value> 

<attrName>.gte=<value> Attribute greater than or equal to <value> 

<attrName>.lt=<value> Attribute less than <value> 

<attrName>.lte=<value> Attribute less than or equal to <value> 

<attrName>.cont=<value>[,<value>]* Attribute contains (at least) one of the values in the list 

<attrName>.ncont=<value>[,<value>]* Attribute does not contain any of the values in the list 

NOTE: This representation shall not be used for attributes whose name is equal to the name of a defined 
URI query parameter.  

 

All objects that match the filter shall be returned as response to a GET request that contains a filter. 

A <value> entry shall contain a scalar value, such as a number or string. The content of a <value> entry shall be 

formatted the same way as the representation of the related attribute in the resource representation, for instance as 

String, Integer, Boolean or DateTime.Attribute-based filters are supported for certain resources. Details are defined in 

the clauses specifying the actual resources. 

6.5.3 Attribute selectors 

6.5.3.1 Overview and example 

Certain resource representations can become quite big, in particular, if the resource is a container for multiple sub-

resources, or if the resource representation itself contains a deeply-nested structure. In these cases, it can be desired to 

reduce the amount of data exchanged over the interface and processed by the API consumer application. On the other 

hand, it can also be desirable that a "drill-deep" for selected parts of the omitted data can be initiated quickly.  

An attribute selector allows the API consumer to choose which attributes it wants to be contained in the response. Only 

attributes that are not required to be present, i.e. those with a lower bound of zero on their cardinality (e.g. 0..1, 0..N) 

and that are not conditionally mandatory, are allowed to be omitted as part of the selection process. Attributes can be 

marked for inclusion or exclusion.  

If an attribute is omitted, a link to a resource may be added where the information of that attribute can be fetched. Such 

approach is known as HATEOAS which is a common pattern in REST, and enables drilling down on selected issues 

without having to repeat a request that may create a potentially big response. 

6.5.3.2 Specification 

6.5.3.2.1 GET request 

The URI query parameters for attribute selection are defined in table 6.5.3.2.1-1. 

In the provisions below, "complex attributes" are assumed to be those attributes that are structured, or that are arrays. 



 NFVSOL(18)000100r1  

 20/46 

Table 6.5.3.2.1-1: Attribute selector parameters 

Parameter Definition 

all_fields This URI query parameter requests that all complex attributes are included in the response, 
including those suppressed by exclude_default. It is inverse to te "exclude_default" 
parameter. The API producer shall support this parameter for certain resources. Details are 
defined in the clauses specifying the actual resources. 

fields This URI query parameter requests that only the listed complex attributes are included in 
the response.  

The parameter shall be formatted as a list of attribute names. An attribute name shall either 
be the name of an attribute, or a path consisting of the names of multiple attributes with 
parent-child relationship, separated by ".". Attribute names in the list shall be separated by 
comma (","). Valid attribute names for a particular GET request are the names of all 
complex attributes in the expected response that have a lower cardinality bound of 0 and 
that are not conditionally mandatory. 

The API producer should support this parameter for certain resources. Details are defined 
in the clauses specifying the actual resources. 

exclude_fields This URI query parameter requests that the listed complex attributes are excluded from the 
response. For the format, eligible attributes and support by the API producer, the provisions 
defined for the "fields" parameter shall apply. 

exclude_default Presence of this URI query parameter requests that a default set of complex attributes shall 
be excluded from the response. The default set is defined per resource in the present 
document. Not every resource will necessarily have such a default set. Only complex 
attributes with a lower cardinality bound of zero that are not conditionally mandatory can be 
included in the set. 

The API producer shall support this parameter for certain resources. Details are defined in 
the clauses specifying the actual resources. 

This parameter is a flag, i.e. it has no value. 

If a resource supports attribute selectors and none of the attribute selector parameters is 
specified in a GET request, the "exclude_default" parameter shall be assumed as the 
default. 

 

6.5.3.2.2 GET response 

Table 6.5.3.2.2-1 defines the valid parameter combinations in a GET request and their effect on the GET response. 

Table 6.5.3.2.2-1: Valid combinations of attribute selector parameters 

Parameter 
combination 

The GET response shall include… 

(none) … same as "exclude_default" 

all_fields … all attributes. 

fields=<list> … all attributes except all complex attributes with minimum cardinality of zero that are not 
conditionally mandatory, and that are not provided in <list>. 

exclude_fields=<list> … all attributes except those complex attributes with a minimum cardinality of zero that are 
not conditionally mandatory, and that are provided in <list>.  

exclude_default … all attributes except those complex attributes with a minimum cardinality of zero that are 
not conditionally mandatory, and that are part of the "default exclude set" defined in the 
present specification for the particular resource 

exclude_default and 
fields=<list> 

… all attributes except those complex attributes with a minimum cardinality of zero that are 
not conditionally mandatory and that are part of the "default exclude set" defined in the 
present specification for the particular resource, but that are not part of <list> 

 

If complex attributes were omitted in a GET response, the response may contain a number of links that allow to obtain 

directly the content of the omitted attributes. Such links shall be embedded into a structure named "_links" at the same 

level as the omitted attribute. That structure shall contain one entry for each link, named as the omitted attribute, and 

containing an "href" attribute that contains the URI of a resource that can be read with GET to obtain the content of the 

omitted attribute. A link shall not be present if the attribute is not present in the underlying resource representation. The 



 NFVSOL(18)000100r1  

 21/46 

resource URI structure of such links is not standardized, but may be chosen by the VNFM implementation. Performing 

a GET request on such a link shall return a representation that contains the content of the omitted attribute.  

EXAMPLE:  

"_links" : { 

"vnfcs" : {"href" : ".../vnflcm/v1/vnf_instances/1234/vnfcs"}, 

"extVirtualLinks" : {"href" : ".../vnflcm/v1/_dynamic/7d6bef4e-d86b-4abc-97ed-9dc9b951f206"} 

} 

 

 

6.6 Pattern: Resource update (PATCH) 

6.6.1 Description 

The PATCH HTTP method (see IETF RFC 5789) is used to update a resource on top of the existing resource state with 

the changes described by the client.  

NOTE:  There is an alternative to use PUT to update a resource which overwrites the resource completely with the 

representation passed in the payload body of the PUT request. PUT is not used for the update of 

structured data in ETSI NFV SOL, but may be used to upload raw files.  

PATCH does not carry a representation of the resource in the entity body, but a document that instructs the server how 

to modify the resource representation. In ETSI NFV SOL specifications, JSON Merge Patch (IETF RFC 7396) is used 

for that purpose, which defines fragments that are merged into the target JSON document.  

Figure 6.6.1-1 illustrates updating a resource by PATCH. 

 

Figure 6.6.1-1: Basic resource update flow with PATCH 

The approach illustrated above can suffer from the "lost update" phenomenon when concurrent changes are applied to 

the same resource. HTTP (see IETF RFC 7232) supports conditional requests to detect such a situation and to give the 

client the opportunity to deal with it. For that purpose, each version of a resource gets assigned an "entity tag" (ETag) 

that is modified by the server each time the resource is changed. This information is delivered to the client in the 

"ETag" HTTP header in HTTP responses. If the client wishes that the server executes the PATCH only if the ETag has 

not changed since the time it has last read the resource (GET), the client adds to the PATCH request the HTTP header 

"If-Match" with the ETag value obtained from the GET request. The server executes the PATCH request only if the 

ETag in the "If-Match" HTTP header matches the current ETag of the resource, and responds with "412 Precondition 

Failed" otherwise. This is illustrated in figure 6.6.1-2. 



 NFVSOL(18)000100r1  

 22/46 

 

Figure 6.6.1-2: Resource update flow with PATCH, considering concurrent updates 

In a particular API, it is recommended to stick to one update pattern - either PUT or PATCH. 

 

6.6.2 Resource definition(s) and HTTP methods 

This pattern is applicable to any resource that allows update by PATCH. 

6.6.3 Resource representation(s) 

The entity body of the PATCH request does not carry a representation of the resource, but a description of the changes 

in one of the formats defined by IETF RFC 7396. IETF RFC 7396 does no selective update of arrays. However, in ETSI 

NFV SOL specifications, many array elements are objects that contain an identifier attribute. In order to modify arrays 

of that type, ETSI NFV SOL has defined an extension of IETF RFC 7396 that allows to add and to update elements, as 

follows:   

Assumptions:  

1) "oldList" is the array to be modified (part of the resource representation) and "newList" is the array in the 

"Modifications" document (part of the PATCH payload) that contains the changes 

2) "oldEntry" is an entry in "oldList" and "newEntry" is an entry in "newList" 

3) A "newEntry" has a "corresponding entry" if there exists an "oldEntry" that has the same content of "id" 

attribute as the "newEntry"; a "newEntry" has no corresponding entry if no such "oldEntry" exists 

4) In any array of "oldEntry" and "newEntry" structures, the content of the "id" attribute is unique (i.e. there 

are no two entries with the same content of "id") 

Provisions: 

1) For each "newEntry" in "newList" that has no corresponding entry in "oldList", the "oldList" array shall be 

modified by adding that "newEntry" 



 NFVSOL(18)000100r1  

 23/46 

2) For each "newEntry" in "newList" that has a corresponding "oldEntry" in "oldList", the value of "oldEntry" 

shall be updated with the value of "newEntry" according to the rules of JSON Merge PATCH (see IETF 

RFC 7396). 

The entity body of the PATCH response may either be empty, or may carry a representation of the updated resource. 

 

6.6.4 HTTP Headers 

In the request, the "Content-type" HTTP header needs to be set to the content type registered for the format used to 

describe the changes, according to IETF RFC 7396. 

If conflicts and data inconsistencies are foreseen when multiple clients update the same resource, the client should pass 

in the "If-Match" HTTP header of the PUT request the value of the "ETag" HTTP header received in the response to the 

GET request. 

6.6.5 Response codes and error handling 

On success, either "200 OK" or "204 No Content" shall be returned. If the ETag value in the "If-Match" HTTP header 

of the PATCH request does not match the current ETag value of the resource, "412 Precondition Failed" shall be 

returned. Otherwise, on failure, the appropriate error code (see annex B) shall be returned. 

Resource update can also be asynchronous in which case "202 Accepted" shall be returned instead of "200 OK". See 

clause 6.8 for more details about asynchronous operations. 

 

6.7 Pattern: Resource deletion (DELETE) 

6.7.1 Description 

The Delete pattern deletes a resource by invoking the HTTP DELETE method on that resource. After successful 

completion, the client shall not assume that the resource is available any longer. 

The response of the DELETE request is typically empty. 

When a deleted resource is accessed subsequently by any HTTP method, typically the server responds with "404 

Resource Not Found". 

Figure 6.7.1-1 illustrates deleting a resource. 

 

Figure 6.7.1-1: Resource deletion flow 

6.7.2 Resource definition(s) and HTTP methods 

This pattern is applicable to any resource that can be deleted. The HTTP method shall be DELETE. 



 NFVSOL(18)000100r1  

 24/46 

6.7.3 Resource representation(s) 

The entity body of the request shall be empty. The entity body of the response is typically empty. 

NOTE: Alternatively, the response can include the final representation of the resource prior to deletion. 

6.7.4 HTTP Headers 

No specific provisions for HTTP headers for this pattern. 

6.7.5 Response codes and error handling 

On success, "204 No content" shall be returned. On failure, the appropriate error code shall be returned. 

If a deleted resource is accessed subsequently by any HTTP method, the server shall respond with "404 Resource Not 

Found". 

Resource deletion can also be asynchronous in which case "202 Accepted" shall be returned instead of "204 No 

content". See clause 6.8 for more details about asynchronous operations. 

 

6.8 Pattern: Asynchronous invocation with monitor 

6.8.1 Description 

Certain operations, which are invoked via a RESTful interface, trigger processing tasks in the underlying system that 

may take a long time, from minutes over hours to even days. In this case, it is inappropriate for the REST client to keep 

the HTTP connection open to wait for the result of the response - the connection will time out before a result is 

delivered. For these cases, asynchronous operations are used. The idea is that the operation immediately returns the 

provisional response "202 Accepted" to indicate that the request was understood, can be correctly marshalled in, and 

processing has started. The client can check the status of the operation by polling; additionally or alternatively, the 

subscribe-notify mechanism (see clause 6.1) can be used to provide the result once available. The progress of the 

operation is reflected by a monitor resource. 

Figure 6.8.1-1 illustrates asynchronous operations with polling. After receiving an HTTP request that is to be processed 

asynchronously, the server responds with "202 Accepted" and includes in a specific "Location" HTTP header a data 

structure that points to a monitor resource which represents the progress of the processing operation. The client can then 

poll the monitor resource by using GET requests, each returning a data structure with information about the operation, 

including the (application-specific) processing status such as "processing", "success" and "failure". In the example, the 

initial status is set to "processing". Eventually, when the processing is finished, the status is set to "success" (for 

successful completion of the operation) or "failure" (for completion with errors). Typically, the representation of a 

monitor resource will include additional information, such as information about the error cause if the operation was not 

successful. 



 NFVSOL(18)000100r1  

 25/46 

 

Figure 6.8.1-1: Asynchronous operation flow - with polling 

Figure 6.8.1-2 illustrates asynchronous operations with subscribe/notify. Before a client issues any request that might be 

processed asynchronously, it subscribes for monitor change notifications. Later, after receiving an HTTP request that is 

to be processed asynchronously, the server responds with "202 Accepted" and includes in the "Location" HTTP header 

a data structure that points to a monitor resource which represents the progress of the processing operation. The client 

can now wait for receiving a notification about the operation finishing, which will change the status of the monitor. 

Once the operation is finished, the server will send to the client a notification with a structure in the entity body that 

typically includes the status of the operation (e.g. "success" or "failure"), a link to the actual monitor affected, and a link 

to the resource that is modified by the asynchronous operation, and application-specific further information, The client 

can then read the monitor resource to obtain further information. 



 NFVSOL(18)000100r1  

 26/46 

 

Figure 6.8.1-2: Asynchronous operation flow - with subscribe/notify 

6.8.2 Resource definition(s) and HTTP methods 

The following resources are involved: 

3) Primary resource: The resource that is about to be created/modified/deleted by the long-running operation. 

4) Monitor resource: The resource that provides information about the long-running operation. 

The HTTP method applied to the primary resource can be any of POST/PUT/PATCH/DELETE. 

The HTTP method applicable to read the monitor resource shall be GET. 

If monitor change notifications and subscriptions to these are supported, the resources and methods described in clause 

6.1 for the RESTful subscribe/notify pattern are applicable here too. 

6.8.3 Resource representation(s) 

The 202 response shall have an empty body. 

The representation of the monitor resource shall contain at least the following information: 

• Resource URI of the primary resource. 

• Status of the operation (e.g. "processing", "success", "failure"). 

• Additional information about the result or the error(s) occurred, if applicable. 

• Information about the operation (e.g. type, parameters, HTTP method used). 

If subscribe/notify is supported, the monitor change notification shall include the status of the operation and the 

resource URI of the monitor, and shall include the resource URI of the affected primary resource. 

6.8.4 HTTP Headers 

The link to the monitor shall be provided in the "Location" HTTP header.  

6.8.5 Response codes and error handling 

On success, "202 Accepted" shall be returned as the response to the request that triggers the long-running operation. On 

failure, the appropriate error code shall be returned. 



 NFVSOL(18)000100r1  

 27/46 

The GET request to the monitor resource shall use "200 OK" as the response code if the monitor could be read 

successfully, or the appropriate error code otherwise. 

If subscribe/notify is supported, the provisions in clause 6.1.5 apply in addition. 

 

6.9 Pattern: Asynchronous resource creation without monitor  

6.9.1 Description 

If only resource creation is asynchronous, there is a simplified pattern available that neither requires a monitor nor a 

subscription. The progress of the operation is tracked by the response code of a GET request to the resource that is 

being created. The POST request to create the resource returns "202 Accepted" and includes the URI of the resource to 

be created in the "Location" HTTP header, and the same response code is returned by the GET request on the to-be-

created resource as long as the resource creation is ongoing. 

Figure 6.9.1-1 illustrates this pattern. 

 

Figure 6.9.1-1: Asynchronous operation flow - with polling 

6.9.2 Resource definition(s) and HTTP methods 

The following resources are involved: 

5) Parent resource: The resource under which a new child resource will be created by the long-running operation. 

The HTTP method applied to the parent resource shall be POST. 

The HTTP method applicable to read the created resource shall be GET. 

 

6.9.3 Resource representation(s) 

The provisions for the resource representation of the POST request to create a resource and the GET response when 

reading a resource apply. 



 NFVSOL(18)000100r1  

 28/46 

6.9.4 HTTP Headers 

The URI of the resource to be created shall be provided in the "Location" HTTP header in the 202 response to the 

POST request. 

6.9.5 Response codes and error handling 

On success, "202 Accepted" shall be returned as the response to the POST request that triggers the long-running 

resource creation operation.  

The GET request to the resource that is being created shall return the "202 Accepted" response code. 

The GET request to the resource that has been successfully created shall return the "200 OK" response code. 

 On failure, the appropriate error code shall be returned by the POST as well as the GET request. 

 

6.10 Task resources  

6.10.1 Description 

In REST interfaces, the goal is to use only four operations on resources: Create, Read, Update, Delete (the so-called 

CRUD principle). However, in a number of cases, actual operations needed in a system design are difficult to model as 

CRUD operations, be it because they involve multiple resources, or that they are processes that modify a resource and 

that take a number of input parameters that do not appear in the resource representation. Such operations are modelled 

as "task resources". 

A task resource is a child resource of a primary resource which is intended as an endpoint for the purpose of invoking a 

non-CRUD operation. That non-CRUD operation executes a procedure that modifies the state of that actual resource in 

a specific way, or performs a computation and returns the result. Task resources are an escape means that allows to 

incorporate aspects of a service-oriented architecture or RPC endpoints into a RESTful interface. 

The only HTTP method that is supported for a task resource is POST, with an entity body that provides input 

parameters to the process which is triggered by the request. Different responses to a POST request to a task resource are 

possible, such as "202 Accepted" (for asynchronous invocation), "200 OK" (to provide a result of a computation based 

on the state of the resource and additional parameters), "204 No Content" (to signal success but not return a result), or 

"303 See Other" (to indicate that a different resource was modified). The actual code used depends greatly on the actual 

system design. 

6.10.2 Resource definition(s) and HTTP methods 

A task resource that models an operation on a particular primary resource is often defined as a child resource of that 

primary resource. The name of the resource should be a verb that indicates which operation is executed when sending a 

POST request to the resource. 

EXAMPLE: …/call_sessions/{sessionId}/call_participants/{participantId}/transfer. 

The HTTP method shall be POST. 

6.10.3 Resource representation(s) 

The entity body of the POST request does not carry a resource representation, but contains input parameters to the 

process that is triggered by the POST request. 

6.10.4 HTTP Headers 

In case the task resource represents an operation that is asynchronous, the provisions in clause 6.8 apply. 

In case the operation modifies a primary resource and the response contains the "303 See Other" response code, the 

"Location" HTTP header points to the primary resource. 

6.10.5 Response codes and error handling 

The response code returned depends greatly on the actual operation that is represented as a task resource, and may 

include the following: 



 NFVSOL(18)000100r1  

 29/46 

• For long-running operations, "202 Accepted" is returned. See clause 6.8 for more details about asynchronous 

operations. 

• If the operation modifies another resource, "303 See Other" is returned. 

• If the operation returns a computation result, "200 OK" is returned. 

• If the operation returns no result, "204 No Content" is returned. 

On failure, the appropriate error code is returned. 

 

6.11 Pattern: Authorization  

ETSI NFV SOL uses OAuth 2.0 to authorize access to the APIs. Further details are provided in clause 4.5 of ETSI GS 

NFV-SOL003 V 1.1.1 [1]. 

 

6.12 Pattern: Error reporting 

6.12.1 Introduction 

In RESTful interfaces, application errors are mapped to HTTP errors. Since HTTP error information is typically not 

enough to discover the root cause of the error, there is the need to deliver additional application specific error 

information. The following clauses define such a mechanism to be used by the interfaces specified in the present 

document.  

6.12.2 General mechanism 

When an error occurs that prevents the API producer from successfully fulfilling the request, the HTTP response shall 

include in the response a status code in the range 400..499 (client error) or 500.599 (server error) as defined by the 

HTTP specification (see IETF RFC 7231, IETF RFC 7232, IETF RFC 7233 and IETF RFC 7235, as well as by IETF 

RFC 6585). In addition, the response body should contain a JSON representation of a "ProblemDetails" data structure 

according to IETF RFC 7807 that provides additional details of the error. In that case, as defined by IETF RFC 7807, 

the "Content-Type" HTTP header shall be set to "application/problem+json". 

6.12.3 Type: ProblemDetails 

The definition of the general "ProblemDetails" data structure from IETF RFC 7807 is reproduced in table 6.12.3-1. 

Compared to the general framework defined in IETF RFC 7807, the "status" and "detail" attributes are mandated to be 

included by the present specification, to ensure that the response contains additional textual information about an error. 

IETF RFC 7807 foresees extensibility of the "ProblemDetails" type. It is possible that particular APIs in the present 

document, or particular implementations, define extensions to define additional attributes that provide more information 

about the error. 

The description column only provides some explanation of the meaning to facilitate understanding of the design. For a 

full description, see IETF RFC 7807. 



 NFVSOL(18)000100r1  

 30/46 

Table 6.12.3-1: Definition of the ProblemDetails data type 

Attribute name Data type Cardinality Description 

type URI 0..1 A URI reference according to IETF RFC 3986 that 
identifies the problem type. It is encouraged that the URI 
provides human-readable documentation for the problem 
(e.g. using HTML) when dereferenced. When this 
member is not present, its value is assumed to be 
"about:blank".  

title String 0..1 A short, human-readable summary of the problem 

type. It should not change from occurrence to occurrence 
of the problem, except for purposes of localization. If type 
is given and other than "about:blank", this attribute shall 
also be provided. 

status Integer 1 The HTTP status code for this occurrence of the problem. 

detail String 1 A human-readable explanation specific to this occurrence 
of the problem. 

instance URI 0..1 A URI reference that identifies the specific occurrence of 
the problem. It may yield further information if 
dereferenced. 

(additional attributes) Not specified. 0..N Any number of additional attributes, as defined in a 
specification or by an implementation. 

 

NOTE: It is expected that the minimum set of information returned in ProblemDetails consists of "status" and 

"detail". For the definition of specific "type" values as well as extension attributes by implementations, 

guidance can be found in IETF RFC 7807. 

6.12.4 Common error situations 

The following common error situations are applicable on all REST resources and related HTTP methods specified in the 

present document, and shall be handled as defined in the present clause. 

400 Bad Request: If the request is malformed or syntactically incorrect (e.g. if the request URI contains incorrect 

query parameters or a syntactically incorrect payload body), the API producer shall respond with 

this response code. The "ProblemDetails" structure shall be provided, and should include in the 

"detail" attribute more information about the source of the problem. 

400 Bad request: If the request contains a malformed access token, the API producer should respond with this 

response. The details of the error shall be returned in the WWW-Authenticate HTTP header, as 

defined in IETF RFC 6750 and IETF RFC 7235. The ProblemDetails structure may be provided. 

400 Bad Request: If there is an application error related to the client's input that cannot be easily mapped to any 

other HTTP response code ("catch all error"), the API producer shall respond with this response 

code. The "ProblemDetails" structure shall be provided, and shall include in the "detail" attribute 

more information about the source of the problem.  

NOTE 1: It is by design to represent this application error situation with the same HTTP error response code as the 

previous one. 

401 Unauthorized: If the request contains no access token even though one is required, or if the request contains an 

authorization token that is invalid (e.g. expired or revoked), the API producer should respond with 

this response. The details of the error shall be returned in the WWW-Authenticate HTTP header, 

as defined in IETF RFC 6750 and IETF RFC 7235. The ProblemDetails structure may be 

provided. 

403 Forbidden: If the API consumer is not allowed to perform a particular request to a particular resource, the API 

producer shall respond with this response code. The "ProblemDetails" structure shall be provided. 

It should include in the "detail" attribute information about the source of the problem, and may 

indicate how to solve it. 



 NFVSOL(18)000100r1  

 31/46 

404 Not Found: If the API producer did not find a current representation for the resource addressed by the URI 

passed in the request, or is not willing to disclose that one exists, it shall respond with this 

response code. The "ProblemDetails" structure may be provided, including in the "detail" attribute 

information about the source of the problem, e.g. a wrong resource URI variable. 

NOTE 2: This response code is not appropriate in case the resource addressed by the URI is a container resource 

which is designed to contain child resources, but does not contain any child resource at the time the 

request is received. For a GET request to an existing empty container resource, a typical response 

contains a 200 OK response code and a payload body with an empty list or array. 

405 Method Not Allowed: If a particular HTTP method is not supported for a particular resource, the API producer 

shall respond with this response code. The "ProblemDetails" structure may be omitted in that case. 

406 Not Acceptable: If the "Accept" HTTP header does not contain at least one name of a content type that is 

acceptable to the API producer, the API producer shall respond with this response code. The 

"ProblemDetails" structure may be omitted in that case. 

422 Unprocessable Entity: If the payload body of a request contains syntactically correct data (e.g. well-formed 

JSON) but the data cannot be processed (e.g. because it fails validation against a schema), the API 

producer shall respond with this response code. The "ProblemDetails" structure shall be provided, 

and should include in the "detail" attribute more information about the source of the problem.  

NOTE 3: This error response code is only applicable for methods that have a request body. 

500 Internal Server Error: If there is an application error not related to the client's input that cannot be easily 

mapped to any other HTTP response code ("catch all error"), the API producer shall respond with 

this response code. The "ProblemDetails" structure shall be provided, and shall include in the 

"detail" attribute more information about the source of the problem. 

503 Service Unavailable: If the API producer encounters an internal overload situation of itself or of a system it 

relies on, it should respond with this response code, following the provisions in IETF RFC 7231 

for the use of the "Retry-After" HTTP header and for the alternative to refuse the connection. The 

"ProblemDetails" structure may be omitted.  

NOTE 4: The error handling defined above only applies to REST resources defined in the present document. For 

the token endpoint defined in IETF RFC 6749, specific error handling applies as defined in IETF RFC 

6749. 

6.12.5 Specific HTTP error status codes 

In general, error response codes used for specific application errors should be mapped to the most similar HTTP error 

status code and documented for each resource. If no such code is applicable, one of the codes 400 (Bad Request, for 

client errors) or 500 (Internal Server Error, for server errors) should be used.  

Implementations may use additional error response codes on top of the ones defined in the specification, as long as they 

are valid HTTP response codes; and should include a ProblemDetails structure in the payload body as defined in clause 

6.12.2. A list of all valid HTTP response codes and their specification documents can be obtained from the HTTP status 

code registry at IANA (https://www.iana.org/assignments/http-status-codes). 

 

 

 

Annex A: REST API template for interface clauses 

X <Long API name> interface 

<Template note: One main clause per interface (e.g. VNF Lifecycle Management interface) >  

 

X.1 Description  

<Template note: Provides a description of the interface.> 

https://www.iana.org/assignments/http-status-codes


 NFVSOL(18)000100r1  

 32/46 

X.2 Resource structure and methods 

All resource URIs of this API shall use the base URI specification defined in clause <4.4>. The string 

"<putApiNameHere>" shall be used to represent {apiName}. The {apiVersion} shall be set to “v1” for the present 

specification. All resource URIs in the sub-clauses below are defined relative to the above base URI. 

 

<Template note: the content formats to be supported are defined globally. If for a particular API there is 
deviation from the global definition this needs to be defined here> 

 

Figure X.2-1 shows the overall resource URI structure defined for the <long API name> API. Table X.2-1 lists the 

individual resources defined, and the applicable HTTP methods. 

 

 

<Template note: a node with a box represents a path segment that has at least one supported HTTP method 
associated. A node without a box represents a path segment that has none. All node names are examples 
only> 

 

 

 

<Template note: A PPT template for the graph above is available as part of the latest revision of this 
document> 

 

Figure X.2-1 Resource URI structure of the <long API name> interface 

 

<Template note: Overview table of resources and operations> 

Table X.2-1 lists the individual resources defined, and the applicable HTTP methods.  

 

The <API producer> shall support responding to requests for all HTTP methods on the resources in Table X.2-1 that 

are marked as "M" (mandatory) in the "Cat" column, and may support responding to requests for those marked as "O" 



 NFVSOL(18)000100r1  

 33/46 

(optional). Conditions for support of responding to requests for those resources and methods marked as "C" 

(conditional) in the "Cat" column by the <API producer> are defined by notes in table X.2-1.  

 

Table X.2-1: Resources and methods overview of the <long API name> interface 

 

Resource name 

 

Resource URI 
HTTP 

METHOD Cat 

 

Meaning 

<Resource Meaning> <relative URI below root> POST M/C/O <short description> 

GET M/C/O <short description> 

PUT M/C/O <short description> 

PATCH M/C/O <short description> 

DELETE M/C/O <short description> 

…     

Subscriptions <relative URI below root> 

 

POST M/C/O <short description> 

[…] M/C/O <short description> 

…     

Notification endpoint (client-provided) POST (*) <short description>. (*) See note. 

GET (*) <short description>. (*) See note. 

NOTE: The <API producer> shall support invoking the HTTP methods defined for the "Notification endpoint" resource exposed by the 
<API consumer>. If the <API consumer> supports invoking the POST method on the "Subscriptions" resource towards the 
<API producer>, it shall also support responding to the HTTP requests defined for the "Notification endpoint" resource. 

 

<Template note: In the table above, only include sub-rows for those HTTP methods that are applicable to the 
resource. Only include rows defining the "Notification endpoint" and "Subscriptions" resources and the 
related notes if subscribe-notify is supported in that API. > 

 

<Template note: Start of Example> 



 NFVSOL(18)000100r1  

 34/46 

Table X.2-2: Resources and methods overview of the Foobar interface 

    

    

  

    

  

  

    

 

Resource name 

 

Resource URI 

HTTP 
METHOD 

Cat  

Meaning 

FOO instances /foo_instances GET M Query multiple FOO instances. 

POST M Create a FOO instance resource. 

Individual FOO instance /foo_instances/{instanceId} GET M Query single FOO instance. 

PATCH O Modify FOO instance information. 

DELETE M Delete FOO instance resource. 

Enlarge FOO task /foo_instances/{instanceId}/enl
arge 

POST C Enlarge a FOO instance. See note 1. 

Subscriptions /subscriptions POST M Create a new subscription. 

Notification endpoint (client-provided) POST (*) Notify about foo change events. (*) See note 2. 

GET (*) Test the notification endpoint. (*) See note 2. 

NOTE 1: Support of this task resource by the FOO Manager depends on the capability level of the FOO manager. FOO Managers of 
capability level "super power" shall support this task resource; all others need not support this task resource. 

NOTE 2: The FOO Manager shall support invoking the HTTP methods defined for the "Notification endpoint" resource exposed by the 
FOO Orchestration Master. If the FOO Orchestration Master supports invoking the POST method on the "Subscription" 
resource towards the FOO Manager, it shall also support responding to the HTTP requests defined for the "Notificaton 
endpoint" resource.   

 

<Template note: End of Example> 

X.3 Sequence diagrams 

<Template note: this clause is Informative. No normative keywords in this clause> 

 

<Template note: This clause will be included if needed to illustrate non-trivial call flows.>  

 

 

X.3.1 <Procedure 1> 

 

<Template note: Add introductory text> 

This clause … 

 

 

<Template note: Add flow diagram using PlantUML tool, see clause 5.1. Don’t forget caption. Conventions 
and example documented in clause 5.2.> 

 



 NFVSOL(18)000100r1  

 35/46 

<placeholder for graphics, centered> 

Figure X.3.1-1 Flow of <Procedure 1>. 

 

 

 

<Template note: Add precondition if applicable> 

Precondition: Text text text 

 

<Template note: Add description of the steps> 

<Template note: Conventions and example for the description of a flow documented in clause 5> 

 

<Procedure 1>, as illustrated in figure X.3.2-1, consists of the following steps: 

 

<Template note: Add error handling if applicable> 

Error handling: Text text text 

 

X.3.2 <Procedure 2> 

<Template note: same as clause X.3.1> 

 

X.4 Resources 

<Template note: this clause is Normative. 

 

 

X.4.1 Introduction 

This clause defines the resources and methods of the <long API name> API. 

 

<Template note: Repeat the following as often as needed, per resource> 

 

X.4.2 Resource: <Meaning>  

X.4.2.1 Description 

This resource represents <something>. The client can use this resource to <do something>. 
 

<Template note: or similar text as applicable.> 

 

<Template note: Start of Example 

This resource represents VNF instances. The client can use this resource to create individual VNF instance resources, 

and to query VNF instances.  

<Template note: End of Example 

 



 NFVSOL(18)000100r1  

 36/46 

X.4.2.2 Resource definition 

The resource URI is:  

{apiRoot}/<putApiNameHere>/v1/<foo_bar> 

 

This resource shall support the resource URI variables defined in table X.4.2.2-1. 

 

Table X.4.2.2-1: Resource URI variables for this resource 

Name Definition 

apiRoot See clause 4.2 

<name> <definition> 

 

 

X.4.2.3 Resource Methods 

X.4.2.3.1 POST 

<Template note: Alternative 2>  

The POST method … <Meaning(s) of the operation in API space. Add specific normative statements about what the 

API producer block is expected to do when receiving this request.>.  

<Template note: Alternative 2>  

This method is not supported. When this method is requested, the <API producer> shall return a "405 Method Not 

Allowed" response as defined in clause <4.3.5.4>. 

<Template note: End of alternatives>  

 

<Template note: Start Example>  

The POST method creates a fooBar object. 

<Template note: End Example>  

 

This method shall follow the provisions specified in the tables X.4.2.3.1-1 and X.4.2.3.1-2 for URI query parameters, 

request and response data structures, and response codes. 

 

Table X.4.2.3.1-1: URI query parameters supported by the <POST> method on this resource 

Name Cardinality Remarks 

<name>  
or  
none supported 

0..1 or 1 or 
0..N or 
<leave 
empty> 

<only if applicable> 

 



 NFVSOL(18)000100r1  

 37/46 

Table X.4.2.3.1-2: Details of the <POST> request/response on this resource  

Request 
body 

Data type Cardinality Description 

<type> or n/a 1 <(i.e. 
object)> or 
0..N / 1..N / 
m..n <i.e. 
array> or 
<leave 
empty> 

<Description of the case in which this data type is sent. Shall be 
present if multiple alternatives exist and may be omitted in case of a 
single alternative> 

Response 
body 

 

Data type 

 

Cardinality 

Response 

Codes 

 

Description 

<type> or n/a 1 <(i.e. 
object)> or 
0..N / 1..N / 
m..n <i.e. 
array> or 
<leave 
empty> 

<list 
applicable 
codes with 
name from 
RFC7231 
etc.> 

<Statement defining the case in which this response is 
returned (success or error)>  

 

<Normative statement about the response body> 

 

<if specific headers are applicable> The HTTP 
response shall / should / may <choose one> include a 
<name> HTTP header that… 

<endif>  

 

<Further text if applicable> 

(…)    

ProblemDetails See clauses 
6.12.4 / 
6.12.5 

<adapt 
clause  
numbers to 
your spec> 

4xx/5xx In addition to the response codes defined above, any 
common error response code as defined in clause 
6.12.4, and any other valid HTTP error response as 
defined in 6.12.5, may be returned.  

 

 

<Template note: Start of Example> 

Table X.4.2.3.1-3: URI query parameters supported by the POST method on this resource 

Name Cardinality Remarks 

foo_bar 0..1 The foo bar 

 



 NFVSOL(18)000100r1  

 38/46 

Table X.4.2.3.1-4: Details of the POST request/response on this resource 

Request 
body 

Data type Cardinality Description 

FooBarCreateRequest 1 Foobar instance creation parameters 

Response 
body 

 

Data type 

 

Cardinality 

Response 

Codes 

 

Description 

FooBarInstance 1 201 
Created 

The foobar instance was created successfully. 

 

The response body shall contain a representation of the 
created foobar instance resource. 

 

The HTTP response shall include a "Location" HTTP 
header that contains the URI of the newly-created 
resource. 

ProblemDetails 1 400 Bad 
Request 

Incorrect parameters were passed to the request. 

 

In the returned ProblemDetails structure, the "detail" 
attribute should convey more information about the 
error. 

ProblemDetails 1 404 
Not Found 

The resource URI was incorrect. 

 

In the returned ProblemDetails structure, the "detail" 
attribute should convey more information about the 
error. 

ProblemDetails See 
clauses 
6.12.4 / 
6.12.5 

4xx/5xx In addition to the response codes defined above, any 
common error response code as defined in clause 
6.12.4, and any other valid HTTP error response as 
defined in 6.12.5, may be returned.  

 

<Template note: End of Example> 

 

 

 

 

<Template note: Main place to define error handling is the table above. If necessary, describe ADDITIONAL 
error handling in text below> 

 

Error handling: text text text 

 

X.4.2.3.2 GET 

<same structure as for POST> 

 

X.4.2.3.3 PUT 

<same structure as for POST> 

 



 NFVSOL(18)000100r1  

 39/46 

X.4.2.3.4 PATCH 

<same structure as for POST> 

 

X.4.2.3.5 DELETE  

<same structure as for POST> 

 

 

X.5 Data model  

<Template note: this clause is normative.> 

 

X.5.1 Introduction 

<Template note: To be written according to the individual specification> 

X.5.2 Resource and notification data types 

X.5.2.1 Introduction 

This clause defines data structures to be used in resource representations and notifications. 

 

X.5.2.2 Type: <TypeName1> 

This type represents a <…>.  It shall comply with the provisions defined in table X.5.2.2-1. 

 

<Template note: Data type names in UpperCamel>  

 

<Template note: Short descriptive text of this data type, followed by a Table. Choices to be defined as 
follows: “NOTE: One of “firstChoice” or at least one of “secondChoice” but not both shall be 
present.”> 

 

<Template note:  

- “Attribute name” provides the name of the attribute in lowerCamel 

 

- “Data type” may provide the name of a named data type (structured, simple or enum) that is defined 
elsewhere in this document, or in a referenced document (e.g., a referenced type from another 
document.) In the latter case, a reference to the defining document shall be included in the 
“Description” column. 

- "Data type" may also indicate the definition of an inlined nested structure. In case of inlining a 
structure, the "Data type" column shall contain the string "Structure (inlined)", and all attributes of the 
inlined structure shall be prefixed with a number of closing angular brackets ">" that represent the 
level of nesting. 

- Typically, named data types are used for a structure that is intended to be re-used for referencing 
from many data types, or when modularizing big data types into smaller ones, e.g. for exposure 
using sub-resources. Inline structures are used if the same structure only appears in one or very few 
data types.  

"Data type" may also indicate the definition of an inlined enumeration type. In case of inlining an 
enumeration type, the "Data type" column shall contain the string "Enum (inlined)", and the 
"Description" column shall contain the allowed values and their meanings. 



 NFVSOL(18)000100r1  

 40/46 

- “Cardinality” defines the allowed number of occurrence 

 

- “Description” describes the meaning and use of the attribute and may contain normative statements. 
In case of an inlined enumeration type, the "Description" column shall define the allowed values and 
their meanings, as follows: "Permitted values:" on one line, followed by one paragraph of the 
following format for each value: "- VAL: Meaning of the value". 

> 

 

 

Table X.5.2.2-1: Definition of the <TypeName1> data type 

Attribute name Data type Cardinality Description 

    

 

<Template note: Start of Example> 

This type represents a foobar indicator. Typically, this corresponds to one distinct stream signalled by foobar. It shall 

comply with the provisions defined in table X.5.2.2-2. 

 

 

Table X.5.2.2-2: Definition of the FooBarIndicator data type 

Attribute name Data type Cardinality Description 

type FooBarType 1 Indicates whether this is a foo, boo or hoo stream. 

entryIdx UnsignedInt 0..N The index of the entry in the signaling table for correlation 
purposes, starting at 0. 

terminationType Enum (inlined) 

 

1 Signals type of termination. 

 
Permitted values: 

- FORCEFUL: The VNFM will shut down the VNF and 
release the resources immediately after accepting the 
request. 

- GRACEFUL: The VNFM will first arrange to take the 
VNF out of service after accepting the request. Once 
the operation is successful or once the timer value 
specified in the “gracefulTerminationTimeout” attribute 
expires, the VNFM will shut down the VNF and 
release the resources. 

firstChoice MyChoiceOneType 0..1 First choice. See NOTE. 

secondChoice MyChoiceTwoType 0..N Second choice. See NOTE. 

nestedStruct Structure (inlined) 0..1 A structure that is inlined, rather than referenced via an 
external type. 

> someId String 1 An identifier. The level of nesting is indicated by ">". 

> myNestedStruct Structure (inlined) 0..N Another nested structure, one level deeper. 

>> child String 1 Child node at nesting level 2, indicated by ">>" 

NOTE: One of “firstChoice” or at least one of “secondChoice” but not both shall be present. 

 



 NFVSOL(18)000100r1  

 41/46 

<Template note: End of Example> 

 

 

 

X.5.3 Referenced structured data types 

X.5.3.1 Introduction 

This clause defines data structures that can be referenced from data structures defined in the previous clauses, but can 

neither be resource representations nor bound to any subscribe/notify mechanism.  

 

X.5.3.2 Type: <TypeName3> 

 

<Template note: Same structure as in X.5.2.2>  

 

 

 

X.5.4 Referenced simple data types and enumerations 

X.5.4.1 Introduction 

This clause defines simple data types that can be referenced from data structures defined in the previous clauses.  

 

<Template note: This covers simple types, including enumerations.> 

 

X.5.4.2 Simple data types  

The simple data types defined in table X.5.4.2-1 shall be supported. 

 

Table X.5.4.2-1: Simple data types 

Type name Description 

  

 

 

X.5.4.3 Enumeration: <TypeName4> 

The enumeration <TypeName4> represents <something>. It shall comply with the provisions defined in table X.5.4.3-

1. 

Table X.5.4.3-1: Enumeration <TypeName4> 

Enumeration value Description 

  

 

 

 



 NFVSOL(18)000100r1  

 42/46 

Annex B: Guidance for managing API version identifiers 

 

B.1 Terminology 

API version identifier: Identifies the version of the OpenAPI description of an API.  

GS version number: Identifies the version of an ETSI Group Specification according to the format and semantics 

specified in Annex B of the ETSI Technical Working procedures. 

Base GS:  Identifies the ETSI GS that contains the reference specification of an API. 

 

B.2 Structure of API version identifiers 

API version identifiers shall consist of at least 3 numerical fields, following a MAJOR.MINOR.PATCH pattern and the 

rules for Semantic Versioning (https://semver.org/). Optionally, a fourth field can be added at the discretion of 

vendor implementations. 

 

B.3  Rules for incrementing field values 

The fields of an API version identifier shall be incremented according to the following rules: 

• 1st Field (MAJOR):  This field shall be incremented when one or more changes are made to the base GS and 

thus to the API and break backward compatibility. 

• 2nd Field (MINOR):  This field shall be incremented if one or more technical changes are made to the base GS 

and thus to the API but do not break backward compatibility. 

• 3rd Field (PATCH):  This field shall be incremented if one or more corrections are made to the OpenAPI 

specification without requiring any change to the base GS (e.g. OpenAPI syntax fix) or a backward-compatible 

bug fix is made on the base GS and thus to the API. 

• 4th Field (VENDOR_VERSION): This optional field identifies a vendor-specific, version number introduced 

by the vendor to optionally indicate a variant within a standard OpenAPI version and such variant is backward 

compatible with the standard version. The vendor-specific, version number is managed by the vendor itself. 

 

Examples of backward compatible changes include: 

• Adding a new, optional child resource/URI (e.g. a new Task resource) 

• Supporting a new HTTP method 

• Adding new elements to a resource representation 

• Changing the order of fields in a resource representation 

• Responding with a new status code of an error class 

 

 Examples of non-backward compatible changes include 

• Removing a resource/URI 

• Removing support for an HTTP method 

• Renaming a field in a resource representation 

• Adding mandatory parameters to a resource URI or resource representation 

• Attribute data type changes 

https://semver.org/


 NFVSOL(18)000100r1  

 43/46 

• Cardinality changes (See note) 

NOTE:  Whether attribute cardinality changes are backward compatible depend on the type of change. Examples 

of non-backward compatibility changes include decreasing the upper bound of a cardinality range for 

attributes sent by the client, changing the meaning of the default behavior associated to the absence of an 

attribute of cardinality 0..N, etc. 

 

B.4 Visibility of the API version identifier fields 

The resource URI of every API is structured as follows:  

{apiRoot}/{apiName}/{apiVersion}/,  

where apiVersion is the concatenation of the letter “v” and the 1st field of the version identifier. 

The 2nd, 3rd and 4th fields shall not be included in the resource URI. 

NOTE:  Including these digits in the URI would force the API client to select a specific sub-version, at the risk of 

seeing the request rejected if the API provider does not support it, while the request could have been 

served by ignoring unknown elements. 

 

The full API version identifier (i.e., 3 or 4 fields) shall be visible in the OpenAPI specifications, in the “version” 

subfield of the “info” field, as illustrated below. 

swagger: "2.0" 

info: 

  version: "1.0.0" 

  title: SOL003 VNF LCM 

  license: 

    name: "ETSI Forge copyright notice" 

    url: https://forge.etsi.org/etsi-forge-copyright-notice.txt 

basePath: "/vnflcm/v1" 

… 

 

The 4th field (i.e., VENDOR_VERSION), if present, shall be the concatenation of the letter “v” (v = vendor version) 

and a numerical identifier provided by the API service implementer. 

 

 

B.5 Relation to the base GS version identifier 

There is no one-to-one mapping between an API version identifier and the version identifier of its base GS.  

A GS specifies multiple APIs, which may have different versions. 

A change in the 3rd field of a GS version identifier (i.e. an editorial change) should not lead to a change in the version 

identifiers of the APIs specified in the GS. 

A change in the 1st and 2nd fields of the GS version identifier is likely to lead to at least a change in the minor version 

number of the APIs specified in the GS. 

For example, if version 2.4.1 of a base GS contains version 1.1.1 of API A, B and C, version 3.1.1 of this base GS can 

contain version 1.2.1 of API A (if all changes made are backward compatible), version 2.1.1 of API B (if some changes 

are no backward compatible) and version 1.1.1 of API C (if no changes were made).  

Each OpenAPI specification shall provide in an “externalDoc” field the reference of the base GS, including the version 

identifier, as illustrated below. 

swagger: "2.0" 

info: 

  version: "1.0.0" 

  title: SOL003 VNF LCM 

  description: The VNF LCM API provide access to VNF lifecycle management services 

  license: 

    name: "ETSI Forge copyright notice" 

    url: https://forge.etsi.org/etsi-forge-copyright-notice.txt 

externalDocs 

  description: ETSI GS NFV-SOL 003 version 2.3.1 

  url : http://www.etsi.org/deliver/etsi_gs/NFV-SOL/001_099/003/02.03.01_60/gs_nfv-

sol003v020301p.pdf 

http://www.etsi.org/deliver/etsi_gs/NFV-SOL/001_099/003/02.03.01_60/gs_nfv-sol003v020301p.pdf
http://www.etsi.org/deliver/etsi_gs/NFV-SOL/001_099/003/02.03.01_60/gs_nfv-sol003v020301p.pdf


 NFVSOL(18)000100r1  

 44/46 

basePath: "/vnflcm/v1" 

 

Multiple versions of the same GS can contain the same API (e.g., SOL003 VNF LCM API) without any modification. 

In this case, all GS SOL003 versions supporting the same API should be listed in the “description” subfield. 

B.6 Learning the supported versions 

Typically, dedicated URIs are defined to enable API consumers to retrieve information about API versions supported by 

an API producer, including whether a particular version is deprecated.  These URIs and the format of the information 

returned by the API producer are specified in the corresponding GSs.   

NOTE: A deprecated version is still supported by the API producer until a retirement date. When a version is no 

longer supported, it does not appear in the list of versions returned by the API producer. 

 

B.7 Migration to a new major version 

When a new major version is created, the server shall continue supporting at least the previous major version until a 

retirement date enabling clients to migrate to the new version.     

 

  

 

  



 NFVSOL(18)000100r1  

 45/46 

Annex C: History 

Revision Date Changes 

(16)00070 12 Sept 
2016 

Skeleton provided 

(16)00070r1 22 Sept 
2016 

Included contributions agreed at the SOL#10 meeting in Sophia Antipolis 

- NFVSOL(16)000075r1_API_conventions_process 

- NFVSOL(16)000069r3_SOL_REST_API_conventions_for_names_in_URIs 

- NFVSOL(16)000074r5_Conventions_for_message_flows 

(16)00070r2 13 Oct 2016 Included contributions agreed at the SOL#11 call 

- NFVSOL(16)000090_SOL_REST_API_conventions_for_names_in_data_stru
ctures 

- NFVSOL(16)000104r2_SOL002 SOL003 REST API document 
template_update 

(16)00070r3 13 Oct 2016 Replaces r2 package file which was faulty. 

(16)00070r4 29 Oct 2016 Included contributions agreed at the SOL#12 meeting, Bundang 

- NFVSOL(16)000123r2_Conventions_change_adding_inline_structures 

- NFVSOL(16)000125r2_Conventions_for_JSON_Schema (rapporteur's 
change: Style of JSON schema reference aligned with agreement in document 
100r3 (JSON Annex for SOL003) 

- NFVSOL(16)000130r2_Conventions_Pattern_for_subscribe_notify 

- NFVSOL(16)000133r1_Conventions_-_Pattern_for_links (rapporteur's 
change: removed reference to JSON language from "5.2 Pattern for links" 
because the present document has no references clause) 

- NFVSOL(16)000135_Conventions_for_opt_group_in_flows 

- NFVSOL(16)000136_Conventions_change_of_definitition_of_data_schema_f
or_entity 

 

(16)00070r5 12 Nov 2016 Included contributions agreed at the SOL#13 call 

- NFVSOL(16)000145r2_Conventions_simplifying_the_table 

 

(16)00070r6 18 Nov 2016 Included contributions agreed at the SOL#15 call 

- NFVSOL(16)000142r2_Conventions_for_inline_enums  
with the following modification: EditHelp discourages the use of own 
paragraph style templates in GSs. Therefore, the following sentence has not 
been incorporated into the present document when implementing 
NFVSOL(16)000142r2: "Microsoft Word paragraph style shall be 
"SOLInlineEnum" (copy the example from the table below to inject the style 
into your document)".  

 

(16)00070r7 15 Dec 2016 Included contributions agreed at the SOL#16 F2F in Shenzhen 

- NFVSOL(16)000199_Template_update 

- NFVSOL(16)000209_Conventions_nicer_tables 

 

(16)00070r8 12 Jan 2017 Included contributions agreed in the SOL#17 call 

- NFVSOL(17)000002_Conventions_splitting_subscribe_and_notify 

 

(17)00050 25 Jan 2017 Included contributions agreed at SOL#18 F2F 

- NFVSOL(16)000185r2 



 NFVSOL(18)000100r1  

 46/46 

- NFVSOL(17)000030_Conventions_change_of_error_handling_in_resources_
clause 

 

(17)00050r1 30 Jan 2017 Included one more agreed contribution from SOL#18 

- NFVSOL(17)000035r1_SOL003_LCM_flow_update 

(17)00050r2 28 Feb 2017 Included contributions from SOL#19 call and SOL#20 F2F (Bilbao) 

- NFVSOL(17)000054_Conventions_Replace_URL_by_URI 

- NFVSOL(17)000084r1_Template_changes_for_error_handling 

- Removed "Data type" column from table X.3.3.3.1-1 to align with a decision 
made for the GS 

- NFVSOL(17)000106_Conventions_Document_NFVSOL_17_000050__Swagg
er_Representatio 

- NFVSOL(17)000111_SOL003_Conventions_move_Resource_structure_up_in
_the_TOC 

- Aligned terminology LifecycleChangeNotificatzion  
VnfLcmOperationOccurrenceNotification 

(17)00050r3 27 Mar 2017 Included contributions from SOL#22 F2F Piscataway 

- NFVSOL(17)000121_Conventions_three_parts_of_remarks_column 

- NFVSOL(17)000187r1_SOL002_SOL003_Conventions_global_fix_for_normat
ive_statement 

(17)00050r4 27 Jul 2017 Included NFVSOL(17)000502r3 to align with patterns that were introduced during the 
development of SOL003, and to prepare the document for being shared on the ETSI 
NFV external wiki. 

(17)00050r5 13 Dec 2017 Included contributions from SOL#45 F2F (Sophia) 

- NFVSOL(17)000595r5_Conventions_for_HTTP_methods_support 

(18)000100 05 Mar 2018 Included contributions from calls between SOL#45 and SOL#55, and from SOL#55 F2F 
(Sophia) 

- NFVSOL(17)000700r7_APIs_-_Proposed_rules_for_versioning-clean 

- NFVSOL(18)000062r1_Conventions_disambiguating_URI_parameter 

- NFVSOL(18)000085_Conventions_404_error_note 

(18)000100r1 04 May 2018 Included contributions from EA subsequent to SOL#55 

- NFVSOL(18)000070r1_API_versions_-_Error_codes 

- NFVSOL(18)000144_Conventions_Document_-
_Learning_supported_API_versions 

 


