Virtualised service assurance management in vGi-LAN: Difference between revisions
No edit summary |
|||
(5 intermediate revisions by the same user not shown) | |||
Line 15: | Line 15: | ||
== PoC Demo == | == PoC Demo == | ||
NFV World Congress, DoubleTree Hilton, San Jose, USA, April 19-22, 2016. | NFV World Congress, DoubleTree Hilton, San Jose, USA, April 19-22, 2016. | ||
ETSI Webinar, June 9, 2016. [https://www.brighttalk.com/webcast/12761/207515 Watch webinar] or [[media:ETSI_NFV_PoC_39_Presentation_vGiLAN_Service_Assurance_Management.pdf|download the presentation (PDF)]]. | |||
== Abstract == | == Abstract == | ||
Line 30: | Line 32: | ||
== PoC Report== | == PoC Report== | ||
[https://docbox.etsi.org/ISG/NFV/TST/05-CONTRIBUTIONS/2016/NFVTST(16)000068_Final_Report_PoC_39_Virtualised_Service_Assurance_Management.docx NFVTST(16)000068_Final_Report_PoC_39_Virtualised_Service_Assurance_Management.docx] | [https://docbox.etsi.org/ISG/NFV/TST/05-CONTRIBUTIONS/2016/NFVTST(16)000068_Final_Report_PoC_39_Virtualised_Service_Assurance_Management.docx NFVTST(16)000068_Final_Report_PoC_39_Virtualised_Service_Assurance_Management.docx] | ||
[[media:000068_Final_Report_PoC_39_Virtualised_Service_Assurance_Manag.pdf|Download PDF version]] |
Latest revision as of 15:11, 9 June 2016
PoC Team
Telenor
Intel
Brocade
Creanord
Main Contact
Rory Browne, Intel rory.browne@intel.com
Brendan Ryan, Intel brendan.ryan@INTEL.COM
PoC Demo
NFV World Congress, DoubleTree Hilton, San Jose, USA, April 19-22, 2016.
ETSI Webinar, June 9, 2016. Watch webinar or download the presentation (PDF).
Abstract
In today’s networks, traffic is rerouted by IP routing protocols or MPLS control planes based on reachability. That is, when traffic is rerouted towards another location, there is no knowledge of the service capability at the new location. An MPLS router may be diverting traffic towards a site whose service functions are already overloaded. By combining platform and network service assurance key performance indicators (KPIs), this PoC aims to address this problem for service chains across multiple locations.
Service assurance accurately measures and reports on infrastructure (network and platform) KPIs that might affect a specific service. Although service assurance is well-understood in the traditional networking environment, applying similar mechanism to network function virtualization (NFV) infrastructure (NFV-I), and using principles from software-defined networking (SDN) to automatically restore service level remains a work in progress. Telenor, Brocade, Creanord, and Intel have partnered together to develop an approach to Virtual Service Assurance Management (vSAM), enabling more open and deterministic service deployment and resource usage in a virtual environment.
vSAM is an E2E service assurance fabric that spans NFVI-PoPs and WAN underlay. The vSAM may be configured with thresholds for KPI violation of the NFVI and underlay. Thus when a NFVI KPI such as CPU load or underlay KPI such as latency are violated for a configurable length of time, the vSAM informs the service orchestration layers. By implementing a vSAM horizontal architecture, whereby service assurance KPIs are abstracted and open, service providers can remove tight dependencies between upper layer service management systems and NFVI which helps address operator challenges around vendor modularity, on-site resource usage optimization and service integrity across the whole SDN/NFV architecture
PoC Proposal
NFV(15)000162r3_NFV_ISG_PoC_Proposal_-_vGiLAN_Service_Assurance_Management.docx
PoC Report
NFVTST(16)000068_Final_Report_PoC_39_Virtualised_Service_Assurance_Management.docx